Prussian White Hierarchical Nanotubes with Surface-Controlled Charge Storage for Sodium-Ion Batteries

被引:169
作者
Ren, Wenhao [1 ]
Zhu, Zixuan [2 ]
Qin, Mingsheng [2 ]
Chen, Sheng [1 ]
Yao, Xuhui [2 ]
Li, Qi [2 ]
Xu, Xiaoming [2 ]
Wei, Qiulong [3 ]
Mai, Liqiang [2 ]
Zhao, Chuan [1 ]
机构
[1] Univ New South Wales, Sch Chem, Sydney, NSW 2052, Australia
[2] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Hubei, Peoples R China
[3] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
hierarchical nanotubes; intercalation pseudocapacitance; Prussian white; sodium-ion batteries; surface-controlled charge storage; INTERCALATION PSEUDOCAPACITANCE; SUPERIOR CATHODE; ENERGY-STORAGE; BLUE ANALOGS; NANOSHEETS; LITHIUM; ULTRAFAST; FRAMEWORK; OXIDE; COST;
D O I
10.1002/adfm.201806405
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Coordination compounds such as Prussian blue and its analogues are acknowledged as promising candidates for electrochemical sodium storage owing to their tailorable and open frameworks. However, a key challenge for these electrode materials is the trade-off between energy and power. Here, it is demonstrate that Prussian white (Na3.1Fe4[Fe(CN)(6)](3)) hierarchical nanotubes with fully open configurations render extrinsic Na+ intercalation pseudocapacitance. The cathode exhibits a capacity up to 83 mA h g(-1) at an ultrahigh rate of 50 C and an unprecedented cycle life over 10 000 times for sodium storage. In situ Raman spectroscopy together with in situ X-ray diffraction analysis reveal that intercalation pseudocapacitance enables full reaction of N-Fe-III/Fe-II sites in Prussian white with a negligible volume expansion (<2.1%). The discovery of surface-controlled charge storage occurring inside the entire bulk of intercalation cathodes paves a new way for developing high power, high energy, and long life-span sodium-ion batteries.
引用
收藏
页数:10
相关论文
共 51 条
[1]   INNER AND OUTER ACTIVE SURFACE OF RUO2 ELECTRODES [J].
ARDIZZONE, S ;
FREGONARA, G ;
TRASATTI, S .
ELECTROCHIMICA ACTA, 1990, 35 (01) :263-267
[2]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[3]   The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies [J].
Bauer, Alexander ;
Song, Jie ;
Vail, Sean ;
Pan, Wei ;
Barker, Jerry ;
Lu, Yuhao .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[4]   Templated Nanocrystal-Based Porous TiO2 Films for Next-Generation Electrochemical Capacitors [J].
Brezesinski, Torsten ;
Wang, John ;
Polleux, Julien ;
Dunn, Bruce ;
Tolbert, Sarah H. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (05) :1802-1809
[5]   CRYSTAL-STRUCTURE OF PRUSSIAN BLUE - FE4[FE(CN)6]3.XH2O [J].
BUSER, HJ ;
SCHWARZENBACH, D ;
PETTER, W ;
LUDI, A .
INORGANIC CHEMISTRY, 1977, 16 (11) :2704-2710
[6]   Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance [J].
Chao, Dongliang ;
Zhu, Changrong ;
Yang, Peihua ;
Xia, Xinhui ;
Liu, Jilei ;
Wang, Jin ;
Fan, Xiaofeng ;
Savilov, Serguei V. ;
Lin, Jianyi ;
Fan, Hong Jin ;
Shen, Ze Xiang .
NATURE COMMUNICATIONS, 2016, 7
[7]   Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage [J].
Charles, Daniel Scott ;
Feygenson, Mikhail ;
Page, Katharine ;
Neuefeind, Joerg ;
Xu, Wenqian ;
Teng, Xiaowei .
NATURE COMMUNICATIONS, 2017, 8
[8]   Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling [J].
Chen, Chaoji ;
Wen, Yanwei ;
Hu, Xianluo ;
Ji, Xiulei ;
Yan, Mengyu ;
Mai, Liqiang ;
Hu, Pei ;
Shan, Bin ;
Huang, Yunhui .
NATURE COMMUNICATIONS, 2015, 6
[9]   The path towards sustainable energy [J].
Chu, Steven ;
Cui, Yi ;
Liu, Nian .
NATURE MATERIALS, 2017, 16 (01) :16-22
[10]   Pseudocapacitive Charge Storage in Thick Composite MoS2 Nanocrystal-Based Electrodes [J].
Cook, John B. ;
Kim, Hyung-Seok ;
Lin, Terri C. ;
Lai, Chun-Han ;
Dunn, Bruce ;
Tolbert, Sarah H. .
ADVANCED ENERGY MATERIALS, 2017, 7 (02)