Complexity of interior-point methods for linear optimization based on a new trigonometric kernel function

被引:42
作者
Peyghami, M. Reza [1 ,3 ]
Hafshejani, S. Fathi [1 ,3 ]
Shirvani, L. [2 ]
机构
[1] KN Toosi Univ Tech, Dept Math, Tehran, Iran
[2] Isfahan Univ, Dept Math, Esfahan, Iran
[3] KN Toosi Univ Tech, Sci Computat OPtimizat & Syst Engn SCOPE, Tehran, Iran
关键词
Kernel function; Linear optimization; Primal-dual interior-point methods; Large-update methods; ALGORITHMS;
D O I
10.1016/j.cam.2013.04.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a new kernel function with trigonometric barrier term for primal-dual interior point methods in linear optimization. Using an elegant and simple analysis and under some easy to check conditions, we explore the worst case complexity result for the large update primal-dual interior point methods. We obtain the worst case iteration bound for the large update primal-dual interior point methods as O (n(2/3) log n/is an element of) which improves the so far obtained complexity results for the trigonometric kernel function in [M. El Ghami, Z.A. Guennoun, S. Boula, T. Steihaug, Interior-point methods for linear optimization based on a kernel function with a trigonometric barrier term, Journal of Computational and Applied Mathematics 236 (2012) 3613-3623] significantly. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:74 / 85
页数:12
相关论文
共 12 条