Adaptive Methods for Linear Programming Decoding

被引:80
作者
Taghavi N, Mohammad H. [1 ,2 ]
Siegel, Paul H. [1 ,2 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Ctr Magnet Recording Res, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Cutting planes; low-density parity-check (LDPC) codes; linear programming (LP); LP decoding; message passing; maximum-likelihood (ML) decoding; pseudocodewords;
D O I
10.1109/TIT.2008.2006384
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Detectability of failures of linear programming (LP) decoding and the potential for improvement by adding new constraints motivate the use of an adaptive approach in selecting the constraints for the underlying LP problem. In this paper, we make a first step in studying this method, and show that by starting from a simple LP problem and adaptively adding the necessary constraints, the complexity of LP decoding can be significantly reduced. In particular, we observe that with adaptive LP decoding, the sizes of the LP problems that need to be solved become practically independent of the density of the parity-check matrix. We further show that adaptively adding extra constraints, such as constraints based on redundant parity checks, can provide large gains in the performance.
引用
收藏
页码:5396 / 5410
页数:15
相关论文
共 18 条
[1]  
[Anonymous], GNU LIN PROGR KIT
[2]  
CHERTKOV M, 2006, P ALL C COMM CONTR C, P31
[3]   Pseudo-codeword landscape [J].
Chertkov, Michael ;
Stepanov, Mikhail .
2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, :1546-+
[4]   Guessing facets: Polytope structure and improved LP decoder [J].
Dimakis, Alexandros G. ;
Wainwright, Martin J. .
2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, :1369-+
[5]   ML decoding via mixed-integer adaptive linear programming [J].
Draper, Stark C. ;
Yedidia, Jonathan S. ;
Wang, Yige .
2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, :1656-+
[6]   Using linear programming to decode binary linear codes [J].
Feldman, J ;
Wainwright, MJ ;
Karger, DR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (03) :954-972
[7]  
GOMORY R, 1958, 1 PRINC IBM
[8]   A decomposition theory for binary linear codes [J].
Kashyap, Navin .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (07) :3035-3058
[9]   A comparison of the Sherali-Adams, Lovasz-Schrijver, and Lasserre relaxations for 0-1 programming [J].
Laurent, M .
MATHEMATICS OF OPERATIONS RESEARCH, 2003, 28 (03) :470-496
[10]  
*MOSEK, MOSEK OPT SOFTW