A note on tameness of families having bounded variation

被引:6
作者
Megrelishvili, Michael [1 ]
机构
[1] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
基金
以色列科学基金会;
关键词
Bounded variation; Independent family; Fragmented function; Helly's selection theorem; Linear order; LOTS; Order-compactification; Sequential compactness; BANACH-SPACES; FRAGMENTABILITY; REPRESENTATIONS;
D O I
10.1016/j.topol.2016.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that for arbitrary linearly ordered set (X, <=) any bounded family of (not necessarily, continuous) real valued functions on X with bounded total variation does not contain independent sequences. We obtain generalized Belly's sequential compactness type theorems. One of the theorems asserts that for every compact metric space (Y, d) the compact space BVr(X, Y) of all functions X -> Y with variation <= r is sequentially compact in the pointwise topology. Another Belly type theorem shows that the compact space M+(X,Y) of all order preserving maps X -> Y is sequentially compact where Y is a compact metrizable partially ordered space in the sense of Nachbin. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 30
页数:11
相关论文
共 29 条
[1]  
[Anonymous], 1964, THEORY FUNCTIONS REA
[2]  
[Anonymous], 1912, Sitzungsber. der math. Naturwiss. Klasse der Akad. der Wiss. (Wien)
[3]  
[Anonymous], 1978, COUNTEREXAMPLES TOPO, DOI DOI 10.1007/978-1-4612-6290-9
[4]   A selection principle for mappings of bounded variation [J].
Belov, SA ;
Chistyakov, VV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 249 (02) :351-366
[5]  
Berglund J.F., 1989, Analysis on Semigroups
[6]   POINTWISE COMPACT SETS OF BAIRE-MEASURABLE FUNCTIONS [J].
BOURGAIN, J ;
FREMLIN, DH ;
TALAGRAND, M .
AMERICAN JOURNAL OF MATHEMATICS, 1978, 100 (04) :845-886
[7]  
Chistyakov V.V., 2004, J. Appl. Anal., V10, P1, DOI [10.1515/JAA.2004.1, DOI 10.1515/JAA.2004.1]
[8]  
Engelking R., 1989, General topology
[9]   On a theorem of E. Helly [J].
Fuchino, S ;
Plewik, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (02) :491-497
[10]   REPRESENTATIONS OF DYNAMICAL SYSTEMS ON BANACH SPACES NOT CONTAINING l1 [J].
Glasner, E. ;
Megrelishvili, M. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (12) :6395-6424