A carbothermal reduction method for enhancing the electrochemical performance of LiFePO4/C composite cathode materials

被引:13
作者
Weng, Shaoying [1 ,2 ]
Yang, Zeheng [1 ,2 ]
Wang, Qiang [1 ,2 ]
Zhang, Jun [1 ,2 ]
Zhang, Weixin [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Chem Engn, Hefei 230009, Anhui, Peoples R China
[2] Anhui Key Lab Controllable Chem React & Mat Chem, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium ion batteries; Lithium iron phosphate; Carbothermal reduction method; Carbon coating; Electrochemical performance; LITHIUM; PARAMETERS; MORPHOLOGY;
D O I
10.1007/s11581-012-0746-4
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
LiFePO4/C composite cathode material has been synthesized by a carbothermal reduction method using beta-FeOOH nanorods as raw materials and glucose as both reducing agent and carbon source. The results indicate that the content of carbon and the morphology of raw material have effect on the electrochemical performance of the final LiFePO4/C material. Sample LFP14 with a carbon content of 2.79 wt.% can deliver discharge capacities of 158.8, 144.3, 111.0, and 92.9 mAh g(-1) at 0.1, 1, 10, and 15 C, respectively. When decreasing the current from 15 C back to 0.1 C, a discharge capacity of 157.5 mAh g(-1) is recovered, which is 99.2 % of its initial capacity. Therefore, as a kind of cathode material for lithium ion batteries, this LiFePO4/C material synthesized via a carbothermal reduction method is promising in large-scale production, and has potential application in upcoming hybrid electric vehicles or electric vehicles.
引用
收藏
页码:235 / 243
页数:9
相关论文
共 31 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[3]   Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries [J].
Choi, Daiwon ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :1064-1069
[4]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[5]   Particle morphology, crystal orientation, and electrochemical reactivity of LiFePO4 synthesized by the hydrothermal method at 443 K [J].
Dokko, Kaoru ;
Koizumi, Shohei ;
Nakano, Hiroyuki ;
Kanamura, Kiyoshi .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (45) :4803-4810
[6]   Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries [J].
Gao, Fei ;
Tang, Zhiyuan .
ELECTROCHIMICA ACTA, 2008, 53 (15) :5071-5075
[7]   Stabilizers of Particle Size and Morphology: a Road Towards High-Rate Performance Insertion Materials [J].
Jamnik, Janez ;
Dominko, Robert ;
Erjavec, Bostjon ;
Remskar, Maja ;
Pintar, Albin ;
Gaberscek, Miran .
ADVANCED MATERIALS, 2009, 21 (25-26) :2715-+
[8]   Optimized solid-state synthesis of LiFePO4 cathode materials using ball-milling [J].
Kang, Hee-Cheol ;
Jun, Dae-Kyoo ;
Jin, Bo ;
Jin, En Mei ;
Park, Kyung-Hee ;
Gu, Hal-Bon ;
Kim, Ki-Won .
JOURNAL OF POWER SOURCES, 2008, 179 (01) :340-346
[9]   Effect of synthesis conditions on the properties of LiFePO4 for secondary lithium batteries [J].
Kim, Do-Kyun ;
Park, Hyun-Min ;
Jung, Su-Jin ;
Jeong, Yeon Uk ;
Lee, Joon-Hyung ;
Kim, Jeong-Joo .
JOURNAL OF POWER SOURCES, 2006, 159 (01) :237-240
[10]   Synthesis of the LiFePO4 by a solid-state reaction using organic acids as a reducing agent [J].
Kim, Hyun-Soo ;
Kam, Dae-Woong ;
Kim, Woo-Seong ;
Koo, Hoe-Jin .
IONICS, 2011, 17 (04) :293-297