A novel data filtering based multi-innovation stochastic gradient algorithm for Hammerstein nonlinear systems

被引:41
作者
Mao, Yawen [1 ]
Ding, Feng [2 ]
机构
[1] Jiangnan Univ, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-innovation identification; Nonlinear system; Key-term separation principle; Data filtering technique; MOVING AVERAGE SYSTEMS; MODEL-PREDICTIVE CONTROL; PARAMETER-ESTIMATION; IDENTIFICATION ALGORITHM; PERFORMANCE ANALYSIS; ITERATIVE ALGORITHM; NEWTON ITERATION; DYNAMIC-SYSTEMS; WIENER SYSTEMS; COLORED NOISE;
D O I
10.1016/j.dsp.2015.07.002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The identification of nonlinear systems is a hot topic in the identification fields. In this paper, a data filtering based multi-innovation stochastic gradient algorithm is derived for Hammerstein nonlinear controlled autoregressive moving average systems by adopting the key-term separation principle and the data filtering technique. The proposed algorithm provides a reference to improve the identification accuracy of the nonlinear systems with colored noise. The simulation results show that the new algorithm can more effectively estimate the parameters of the Hammerstein nonlinear systems than the multi-innovation stochastic gradient algorithm. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:215 / 225
页数:11
相关论文
共 50 条
[31]   Multi-Innovation Stochastic Gradient Algorithm for Output Error Systems Based on the Auxiliary Model [J].
Wang, Dongqing ;
Ding, Feng ;
Liu, Peter X. .
2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, :5594-+
[32]   Multi-innovation Generalized Extended Stochastic Gradient Algorithm for Multi-Input Multi-Output Nonlinear Box-Jenkins Systems Based on the Auxiliary Model [J].
Chen, Jing ;
Wang, Xiuping .
LIFE SYSTEM MODELING AND INTELLIGENT COMPUTING, PT I, 2010, 6328 :136-+
[33]   Identification of a nonlinear rational model based on bias compensated multi-innovation stochastic gradient algorithm [J].
Jing, S. X. ;
Liu, R. R. ;
Chen, L. .
AUTOMATIKA, 2022, 63 (04) :785-792
[34]   Data filtering based forgetting factor stochastic gradient algorithm for Hammerstein systems with saturation and preload nonlinearities [J].
Ma, Junxia ;
Xiong, Weili ;
Ding, Feng ;
Alsaedi, Ahmed ;
Hayat, Tasawar .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2016, 353 (16) :4280-4299
[35]   Multi-innovation Stochastic Gradient Learning Identification Algorithm [J].
Bi Hongbo ;
Sun Mingxuan ;
He Haigang .
PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, :1727-1732
[36]   An Improved Method for Stochastic Nonlinear System's Identification Using Fuzzy-Type Output-Error Autoregressive Hammerstein-Wiener Model Based on Gradient Algorithm, Multi-Innovation, and Data Filtering Techniques [J].
Abid, Donia Ben Halima ;
Abouda, Saif Eddine ;
Medhaffar, Hanane ;
Chtourou, Mohamed .
COMPLEXITY, 2021, 2021
[37]   Multi-innovation stochastic gradient algorithms for multi-input multi-output systems [J].
Han, Lili ;
Ding, Feng .
DIGITAL SIGNAL PROCESSING, 2009, 19 (04) :545-554
[38]   Multi-innovation Stochastic Gradient Parameter Estimation for Input Nonlinear Controlled Autoregressive Models [J].
Xiao, Yongsong ;
Song, Guanglei ;
Liao, Yuwu ;
Ding, Ruifeng .
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2012, 10 (03) :639-643
[39]   Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems [J].
Wang, Dongqing ;
Ding, Feng .
DIGITAL SIGNAL PROCESSING, 2010, 20 (03) :750-762
[40]   Parameter identification algorithm for ship manoeuvrability and wave peak model based multi-innovation stochastic gradient algorithm use data filtering technique [J].
Liu, Yang ;
An, Shun ;
Wang, Longjin ;
He, Yan ;
Fan, Zhimin .
DIGITAL SIGNAL PROCESSING, 2024, 148