Hopf Lemma and regularity results for quasilinear anisotropic elliptic equations

被引:13
作者
Castorina, Daniele [1 ]
Riey, Giuseppe [2 ]
Sciunzi, Berardino [2 ]
机构
[1] John Cabot Univ, Dept Math Comp Sci & Nat Sci, Via Lungara 233, I-00165 Rome, Italy
[2] Univ Calabria, Dipartimento Matemat & Informat, Ponte Pietro Bucci 31B, I-87036 Arcavacata Di Rende, CS, Italy
关键词
COMPARISON PRINCIPLES; POSITIVE SOLUTIONS; DEGENERATE; MONOTONICITY; MAXIMUM;
D O I
10.1007/s00526-019-1528-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of quasi-linear anisotropic elliptic equations, possibly degenerate or singular, which are of interest in several applications such as computer vision and continuum mechanics. We prove a Hopf Lemma as well as local and global regularity estimates for positive solutions, generalizing previous results known in the context of p-Laplacian equations.
引用
收藏
页数:18
相关论文
共 29 条
[1]   Fractional-order anisotropic diffusion for image denoising [J].
Bai, Jian ;
Feng, Xiang-Chu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (10) :2492-2502
[2]  
Bao D., 2000, INTRUDUCTION RIEMANN
[3]  
Bellettini G, 2003, INTERFACE FREE BOUND, V5, P331
[4]   On a crystalline variational problem, Part II: BV regularity and structure of minimizers on facets [J].
Bellettini, G ;
Novaga, M ;
Paolini, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 157 (03) :193-217
[5]  
Bellettini G., 1996, HOKKAIDO MATH J, V25, P537, DOI https://doi.org/10.14492/hokmj/1351516749
[6]   Homogenization of Penrose tilings [J].
Braides, Andrea ;
Riey, Giuseppe ;
Solci, Margherita .
COMPTES RENDUS MATHEMATIQUE, 2009, 347 (11-12) :697-700
[7]   Spectral theory for linearized p-Laplace equations [J].
Castorina, D. ;
Esposito, P. ;
Sciunzi, B. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) :3606-3613
[8]   Monotonicity formulae and classification results for singular, degenerate, anisotropic PDEs [J].
Cozzi, Matteo ;
Farina, Alberto ;
Valdinoci, Enrico .
ADVANCES IN MATHEMATICS, 2016, 293 :343-381
[9]   Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations [J].
Damascelli, L ;
Sciunzi, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 206 (02) :483-515
[10]   Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-laplace equations [J].
Damascelli, L ;
Sciunzi, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 25 (02) :139-159