Approximating the approximant: a numerical code for polynomial compression of discrete integral operators

被引:3
作者
De Marchi, S
Vianello, M
机构
[1] Univ Verona, Dipartimento Informat, I-37100 Verona, Italy
[2] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35100 Padua, Italy
关键词
linear and nonlinear discrete integral operators; Chebyshev series expansion; compression; fast evaluation;
D O I
10.1023/A:1014030412645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The action of various one-dimensional integral operators, discretized by a suitable quadrature method, can be compressed and accelerated by means of Chebyshev series approximation. Our approach has a different conception with respect to other well-known fast methods: its effectiveness rests on the "smoothing effect" of integration, and it works in linear as well as nonlinear instances, with both smooth and nonsmooth kernels. We describe a matlab toolbox which implements Chebyshev-like compression of discrete integral operators, and we present several numerical tests. where the basic O(n(2)) complexity is shown to be reduced to O(mn), with m << n.
引用
收藏
页码:101 / 116
页数:16
相关论文
共 33 条
[11]   FAST ALGORITHMS FOR CLASSICAL PHYSICS [J].
GREENGARD, L .
SCIENCE, 1994, 265 (5174) :909-914
[12]   THE FAST GAUSS TRANSFORM [J].
GREENGARD, L ;
STRAIN, J .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (01) :79-94
[13]   A FAST ALGORITHM FOR PARTICLE SIMULATIONS [J].
GREENGARD, L ;
ROKHLIN, V .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 73 (02) :325-348
[14]  
Greengard L., 1997, Acta Numerica, V6, P229, DOI 10.1017/S0962492900002725
[15]  
Greengard Leslie, 1998, Doc. Math., V3, P575
[16]  
Hackbusch W, 1999, COMPUTING, V62, P89, DOI 10.1007/s006070050015
[17]  
Hackbusch W, 2000, COMPUTING, V64, P21
[18]  
Hackbusch W, 2001, OPER THEORY ADV APPL, V121, P194
[19]   ON THE FAST MATRIX MULTIPLICATION IN THE BOUNDARY ELEMENT METHOD BY PANEL CLUSTERING [J].
HACKBUSCH, W ;
NOWAK, ZP .
NUMERISCHE MATHEMATIK, 1989, 54 (04) :463-491
[20]   A POINTWISE QUASI-NEWTON METHOD FOR INTEGRAL-EQUATIONS [J].
KELLEY, CT ;
NORTHRUP, JI .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (05) :1138-1155