Approximating the approximant: a numerical code for polynomial compression of discrete integral operators

被引:3
作者
De Marchi, S
Vianello, M
机构
[1] Univ Verona, Dipartimento Informat, I-37100 Verona, Italy
[2] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35100 Padua, Italy
关键词
linear and nonlinear discrete integral operators; Chebyshev series expansion; compression; fast evaluation;
D O I
10.1023/A:1014030412645
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The action of various one-dimensional integral operators, discretized by a suitable quadrature method, can be compressed and accelerated by means of Chebyshev series approximation. Our approach has a different conception with respect to other well-known fast methods: its effectiveness rests on the "smoothing effect" of integration, and it works in linear as well as nonlinear instances, with both smooth and nonsmooth kernels. We describe a matlab toolbox which implements Chebyshev-like compression of discrete integral operators, and we present several numerical tests. where the basic O(n(2)) complexity is shown to be reduced to O(mn), with m << n.
引用
收藏
页码:101 / 116
页数:16
相关论文
共 33 条
[1]   WAVELET-LIKE BASES FOR THE FAST SOLUTION OF 2ND-KIND INTEGRAL-EQUATIONS [J].
ALPERT, B ;
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (01) :159-184
[2]  
[Anonymous], 1995, INT SERIES NUMERICAL
[3]  
Atkinson K., 1992, J. Int. Eqns. Appl., V4, P15
[4]  
ATKINSON KE, 1997, CAMBRIDGE MONOGRAPHS, V4
[5]  
Bos L, 2001, MATH COMPUT, V70, P1543, DOI 10.1090/S0025-5718-00-01262-X
[6]  
BOS L, 2000, E J APPROX, V6, P189
[7]   Multilevel evaluation of integral transforms with asymptotically smooth kernels [J].
Brandt, A ;
Venner, CH .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (02) :468-492
[8]  
Dahmen W., 1997, Acta Numerica, V6, P55, DOI 10.1017/S0962492900002713
[9]  
Goreinov SA, 1997, NUMER LINEAR ALGEBR, V4, P273, DOI 10.1002/(SICI)1099-1506(199707/08)4:4<273::AID-NLA97>3.0.CO
[10]  
2-T