Maximization of Recursive Utilities: A Dynamic Maximum Principle Approach

被引:10
作者
Faidi, Wahid [1 ]
Matoussi, Anis [2 ,3 ]
Mnif, Mohamed [1 ]
机构
[1] Univ Tunis El Manar, Lab Modelisat Math & Numer Sci Ingn, Ecole Natl Ingn Tunis, Tunis 1002, Tunisia
[2] Univ Maine, Lab Manceau Math, F-72085 Le Mans, France
[3] Ecole Polytech, CMAP, F-91128 Palaiseau, France
来源
SIAM JOURNAL ON FINANCIAL MATHEMATICS | 2011年 / 2卷 / 01期
关键词
utility maximization; backward stochastic differential equations; recursive utility; model uncertainty; robust control; maximum principle; forward-backward system; OPTIMAL PORTFOLIO; CONSUMPTION; CONSTRAINTS; INVESTMENT;
D O I
10.1137/100814354
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We study a maximization problem from terminal wealth and consumption for a class of robust utility functions introduced in Bordigoni, Matoussi, and Schweizer [A stochastic control approach to a robust utility maximization problem, in Stochastic Analysis and Applications, Abel Symp. 2, F. E. Benth, G. Di Nunno, T. Lindstrom, B. Oksendal, and T. Zhang, eds., Springer, Berlin, 2007, pp. 125-151]. Our method is based on backward stochastic differential equation theory techniques. We prove a dynamic maximum principle for the optimal control. We study the existence and the uniqueness of the consumption-investment strategy which is characterized as the unique solution of a forward-backward system.
引用
收藏
页码:1014 / 1041
页数:28
相关论文
共 25 条
  • [1] A QUARTET OF SEMIGROUPS FOR MODEL SPECIFICATION, ROBUSTNESS, PRICES OF RISK, AND MODEL DETECTION
    Anderson, Evan W.
    Hansen, Lars Peter
    Sargent, Thomas J.
    [J]. JOURNAL OF THE EUROPEAN ECONOMIC ASSOCIATION, 2003, 1 (01) : 68 - 123
  • [2] Barrieu P, 2009, PRINC SER FINANC ENG, P77
  • [3] BORDIGONI G., 2005, THESIS POLITECNICO M
  • [4] Bordigoni G, 2007, ABEL SYMP, V2, P125
  • [5] Cox JC, 1989, ECON THEOR, V49, P33
  • [6] A GENERAL VERSION OF THE FUNDAMENTAL THEOREM OF ASSET PRICING
    DELBAEN, F
    SCHACHERMAYER, W
    [J]. MATHEMATISCHE ANNALEN, 1994, 300 (03) : 463 - 520
  • [7] CONTINUOUS-TIME SECURITY PRICING - A UTILITY GRADIENT APPROACH
    DUFFIE, D
    SKIADAS, C
    [J]. JOURNAL OF MATHEMATICAL ECONOMICS, 1994, 23 (02) : 107 - 131
  • [8] STOCHASTIC DIFFERENTIAL UTILITY
    DUFFIE, D
    EPSTEIN, LG
    [J]. ECONOMETRICA, 1992, 60 (02) : 353 - 394
  • [9] El Karoui N, 2001, ANN APPL PROBAB, V11, P664
  • [10] Ji SL, 2006, COMMUN INF SYST, V6, P321