Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production

被引:349
作者
Liu, Yi [1 ]
Zhang, Jihua [2 ]
Li, Yapeng [1 ]
Qian, Qizhu [1 ]
Li, Ziyun [1 ]
Zhu, Yin [1 ]
Zhang, Genqiang [1 ]
机构
[1] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei Natl Lab Phys Sci Microscale, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[2] Guizhou Educ Univ, Guizhou Prov Key Lab Computat Nanomat Sci, Guiyang 550018, Peoples R China
基金
中国国家自然科学基金;
关键词
N-DOPED CARBON; HYDROGEN EVOLUTION; COBALT NITRIDE; OXYGEN REDUCTION; NANOWIRE ARRAY; FUEL-CELL; CATALYSTS; ELECTROCATALYSTS; PERFORMANCE; CONVERSION;
D O I
10.1038/s41467-020-15563-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Replacing sluggish oxygen evolution reaction (OER) with hydrazine oxidation reaction (HzOR) to produce hydrogen has been considered as a more energy-efficient strategy than water splitting. However, the relatively high cell voltage in two-electrode system and the required external electric power hinder its scalable applications, especially in mobile devices. Herein, we report a bifunctional P, W co-doped Co3N nanowire array electrode with remarkable catalytic activity towards both HzOR (-55 mV at 10 mA cm(-2)) and hydrogen evolution reaction (HER, -41 mV at 10 mA cm(-2)). Inspiringly, a record low cell voltage of 28 mV is required to achieve 10 mA cm(-2) in two-electrode system. DFT calculations decipher that the doping optimized H* adsorption/desorption and dehydrogenation kinetics could be the underlying mechanism. Importantly, a self-powered H-2 production system by integrating a direct hydrazine fuel cell with a hydrazine splitting electrolyzer can achieve a decent rate of 1.25 mmol h(-1) at room temperature.
引用
收藏
页数:13
相关论文
共 68 条
[1]   A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles [J].
Asazawa, Koichiro ;
Yamada, Koji ;
Tanaka, Hirohisa ;
Oka, Akinori ;
Taniguchi, Masatoshi ;
Kobayashi, Tetsuhiko .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (42) :8024-8027
[2]   Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction [J].
Cao, Bingfei ;
Veith, Gabriel M. ;
Neuefeind, Joerg C. ;
Adzic, Radoslav R. ;
Khalifah, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (51) :19186-19192
[3]  
Chen P., 2015, ANGEW CHEM INT EDIT, V54, P14710, DOI [DOI 10.1002/ANIE.201506480, 10.1002/anie.201506480]
[4]   Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction [J].
Chen, Pengzuo ;
Xu, Kun ;
Tong, Yun ;
Li, Xiuling ;
Tao, Shi ;
Fang, Zhiwei ;
Chu, Wangsheng ;
Wu, Xiaojun ;
Wu, Changzheng .
INORGANIC CHEMISTRY FRONTIERS, 2016, 3 (02) :236-242
[5]   Tailoring the d-Band Centers Enables Co4N Nanosheets To Be Highly Active for Hydrogen Evolution Catalysis [J].
Chen, Zhiyan ;
Song, Yao ;
Cai, Jinyan ;
Zheng, Xusheng ;
Han, Dongdong ;
Wu, Yishang ;
Zang, Yipeng ;
Niu, Shuwen ;
Liu, Yun ;
Zhu, Junfa ;
Liu, Xiaojing ;
Wang, Gongming .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (18) :5076-5080
[6]   Solar Energy Supply and Storage for the Legacy and Non legacy Worlds [J].
Cook, Timothy R. ;
Dogutan, Dilek K. ;
Reece, Steven Y. ;
Surendranath, Yogesh ;
Teets, Thomas S. ;
Nocera, Daniel G. .
CHEMICAL REVIEWS, 2010, 110 (11) :6474-6502
[7]   A Ni3N-Co3N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection [J].
Dai, Xinglu ;
Deng, Wenqing ;
You, Chao ;
Shen, Zhen ;
Xiong, Xiaoli ;
Sun, Xuping .
ANALYTICAL METHODS, 2018, 10 (15) :1680-1684
[8]   Atomically ordered non-precious Co3Ta intermetallic nanoparticles as high-performance catalysts for hydrazine electrooxidation [J].
Feng, Guang ;
An, Li ;
Li, Biao ;
Zuo, Yuxuan ;
Song, Jin ;
Ning, Fanghua ;
Jiang, Ning ;
Cheng, Xiaopeng ;
Zhang, Yuefei ;
Xia, Dingguo .
NATURE COMMUNICATIONS, 2019, 10 (1)
[9]   Three-dimensional porous superaerophobic nickel nanoflower electrodes for high-performance hydrazine oxidation [J].
Feng, Guang ;
Kuang, Yun ;
Li, Yingjie ;
Sun, Xiaoming .
NANO RESEARCH, 2015, 8 (10) :3365-3371
[10]   Computational high-throughput screening of electrocatalytic materials for hydrogen evolution [J].
Greeley, Jeff ;
Jaramillo, Thomas F. ;
Bonde, Jacob ;
Chorkendorff, I. B. ;
Norskov, Jens K. .
NATURE MATERIALS, 2006, 5 (11) :909-913