Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production

被引:325
作者
Liu, Yi [1 ]
Zhang, Jihua [2 ]
Li, Yapeng [1 ]
Qian, Qizhu [1 ]
Li, Ziyun [1 ]
Zhu, Yin [1 ]
Zhang, Genqiang [1 ]
机构
[1] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei Natl Lab Phys Sci Microscale, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[2] Guizhou Educ Univ, Guizhou Prov Key Lab Computat Nanomat Sci, Guiyang 550018, Peoples R China
基金
中国国家自然科学基金;
关键词
N-DOPED CARBON; HYDROGEN EVOLUTION; COBALT NITRIDE; OXYGEN REDUCTION; NANOWIRE ARRAY; FUEL-CELL; CATALYSTS; ELECTROCATALYSTS; PERFORMANCE; CONVERSION;
D O I
10.1038/s41467-020-15563-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Replacing sluggish oxygen evolution reaction (OER) with hydrazine oxidation reaction (HzOR) to produce hydrogen has been considered as a more energy-efficient strategy than water splitting. However, the relatively high cell voltage in two-electrode system and the required external electric power hinder its scalable applications, especially in mobile devices. Herein, we report a bifunctional P, W co-doped Co3N nanowire array electrode with remarkable catalytic activity towards both HzOR (-55 mV at 10 mA cm(-2)) and hydrogen evolution reaction (HER, -41 mV at 10 mA cm(-2)). Inspiringly, a record low cell voltage of 28 mV is required to achieve 10 mA cm(-2) in two-electrode system. DFT calculations decipher that the doping optimized H* adsorption/desorption and dehydrogenation kinetics could be the underlying mechanism. Importantly, a self-powered H-2 production system by integrating a direct hydrazine fuel cell with a hydrazine splitting electrolyzer can achieve a decent rate of 1.25 mmol h(-1) at room temperature.
引用
收藏
页数:13
相关论文
共 68 条
  • [1] A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles
    Asazawa, Koichiro
    Yamada, Koji
    Tanaka, Hirohisa
    Oka, Akinori
    Taniguchi, Masatoshi
    Kobayashi, Tetsuhiko
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (42) : 8024 - 8027
  • [2] Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction
    Cao, Bingfei
    Veith, Gabriel M.
    Neuefeind, Joerg C.
    Adzic, Radoslav R.
    Khalifah, Peter G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (51) : 19186 - 19192
  • [3] Chen P., 2015, ANGEW CHEM INT EDIT, V127, P14923, DOI [DOI 10.1002/ANIE.201506480, 10.1002/ange.201506480]
  • [4] Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction
    Chen, Pengzuo
    Xu, Kun
    Tong, Yun
    Li, Xiuling
    Tao, Shi
    Fang, Zhiwei
    Chu, Wangsheng
    Wu, Xiaojun
    Wu, Changzheng
    [J]. INORGANIC CHEMISTRY FRONTIERS, 2016, 3 (02): : 236 - 242
  • [5] Tailoring the d-Band Centers Enables Co4N Nanosheets To Be Highly Active for Hydrogen Evolution Catalysis
    Chen, Zhiyan
    Song, Yao
    Cai, Jinyan
    Zheng, Xusheng
    Han, Dongdong
    Wu, Yishang
    Zang, Yipeng
    Niu, Shuwen
    Liu, Yun
    Zhu, Junfa
    Liu, Xiaojing
    Wang, Gongming
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (18) : 5076 - 5080
  • [6] Solar Energy Supply and Storage for the Legacy and Non legacy Worlds
    Cook, Timothy R.
    Dogutan, Dilek K.
    Reece, Steven Y.
    Surendranath, Yogesh
    Teets, Thomas S.
    Nocera, Daniel G.
    [J]. CHEMICAL REVIEWS, 2010, 110 (11) : 6474 - 6502
  • [7] A Ni3N-Co3N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection
    Dai, Xinglu
    Deng, Wenqing
    You, Chao
    Shen, Zhen
    Xiong, Xiaoli
    Sun, Xuping
    [J]. ANALYTICAL METHODS, 2018, 10 (15) : 1680 - 1684
  • [8] Atomically ordered non-precious Co3Ta intermetallic nanoparticles as high-performance catalysts for hydrazine electrooxidation
    Feng, Guang
    An, Li
    Li, Biao
    Zuo, Yuxuan
    Song, Jin
    Ning, Fanghua
    Jiang, Ning
    Cheng, Xiaopeng
    Zhang, Yuefei
    Xia, Dingguo
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [9] Three-dimensional porous superaerophobic nickel nanoflower electrodes for high-performance hydrazine oxidation
    Feng, Guang
    Kuang, Yun
    Li, Yingjie
    Sun, Xiaoming
    [J]. NANO RESEARCH, 2015, 8 (10) : 3365 - 3371
  • [10] Computational high-throughput screening of electrocatalytic materials for hydrogen evolution
    Greeley, Jeff
    Jaramillo, Thomas F.
    Bonde, Jacob
    Chorkendorff, I. B.
    Norskov, Jens K.
    [J]. NATURE MATERIALS, 2006, 5 (11) : 909 - 913