nanoNS3: Simulating Bacterial Molecular Communication Based Nanonetworks in Network Simulator 3

被引:5
作者
Jian, Yubing [1 ]
Krishnaswamy, Bhuvana [1 ]
Austin, Caitlin M. [2 ]
Bicen, A. Ozan [1 ]
Perdomo, Jorge E. [2 ]
Patel, Sagar C. [2 ]
Akyildiz, Ian F. [1 ]
Forest, Craig R. [2 ]
Sivakumar, Raghupathy [1 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
来源
PROCEEDINGS OF THE 3RD ACM INTERNATIONAL CONFERENCE ON NANOSCALE COMPUTING AND COMMUNICATION (ACM NANOCOM 2016) | 2016年
基金
美国国家科学基金会;
关键词
BMC Simulator; ns-3; Di.usion-based Molecular Communication; Experimental-based Simulator; DESIGN;
D O I
10.1145/2967446.2967464
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present nanoNS3, a network simulator for modeling Bacterial Molecular Communication (BMC) networks. nanoNS3 is built atop the Network Simulator 3 (ns-3). nanoNS3 is designed to achieve the following goals: 1) accurately and realistically model real world BMC, 2) maintain high computational efficiency, 3) allow newly designed protocols to be implemented easily. nanoNS3 incorporates the channel, physical (PHY) and medium access control (MAC) layers of the network stack. The simulator has models that accurately represents receiver response, microfluidic channel loss, modulation, and amplitude addressing designed specifically for BMC networks. We outline the design and architecture of nanoNS3, and then validate the aforementioned features through simulation and experimental results.
引用
收藏
页数:7
相关论文
共 18 条
[1]  
[Anonymous], Network simulator 3 description
[2]  
[Anonymous], COMSOL Multiphysics
[3]  
[Anonymous], 2012, Nano Commun. Netw., DOI DOI 10.1016/J.NANCOM.2011.09.002
[4]  
[Anonymous], CALCOMSIM
[5]  
[Anonymous], 2010, Nano Commun. Netw.
[6]  
[Anonymous], 2015, 2 ACM ANN INT C NANO
[7]   Modeling and validation of autoinducer-mediated bacterial gene expression in microfluidic environments [J].
Austin, Caitlin M. ;
Stoy, William ;
Su, Peter ;
Harber, Marie C. ;
Bardill, J. Patrick ;
Hammer, Brian K. ;
Forest, Craig R. .
BIOMICROFLUIDICS, 2014, 8 (03)
[8]   System-Theoretic Analysis and Least-Squares Design of Microfluidic Channels for Flow-Induced Molecular Communication [J].
Bicen, A. Ozan ;
Akyildiz, Ian F. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (20) :5000-5013
[9]   A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: technical development and proof of concept of the biosensor [J].
Charrier, Thomas ;
Chapeau, Cyrille ;
Bendria, Loubna ;
Picart, Pascal ;
Daniel, Philippe ;
Thouand, Gerald .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2011, 400 (04) :1061-1070
[10]   Design and Analysis of Wireless Communication Systems Using Diffusion-Based Molecular Communication Among Bacteria [J].
Einolghozati, Arash ;
Sardari, Mohsen ;
Fekri, Faramarz .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2013, 12 (12) :6096-6105