The game L(d, 1)-labeling problem of graphs

被引:2
|
作者
Chia, Ma-Lian [2 ]
Hsu, Huei-Ni [1 ,2 ,3 ]
Kuo, David [1 ]
Liaw, Sheng-Chyang [3 ]
Xu, Zi-teng [1 ,2 ,3 ]
机构
[1] Natl Dong Hwa Univ, Dept Appl Math, Hualien 97401, Taiwan
[2] Aletheia Univ, Dept Appl Math, Tamsui 251, Taiwan
[3] Natl Cent Univ, Dept Math, Jhongli 32001, Taiwan
关键词
Game L(d; 1)-labeling; Complete graphs; Complete bipartite graphs; CHROMATIC NUMBER; LABELING GRAPHS; DISTANCE-2;
D O I
10.1016/j.disc.2012.07.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph and let k be a positive integer. Consider the following two-person game which is played on G: Alice and Bob alternate turns. A move consists of selecting an unlabeled vertex upsilon of G and assigning it a number a from {0, 1, 2, . . . , k} satisfying the condition that, for all u epsilon V(G), u is labeled by the number b previously, if d(u, upsilon) = 1, then vertical bar a - b vertical bar >= d, and if d(u, upsilon) = 2, then vertical bar a - b vertical bar >= 1. Alice wins if all the vertices of G are successfully labeled. Bob wins if an impasse is reached before all vertices in the graph are labeled. The game L(d, 1)-labeling number of a graph G is the least k for which Alice has a winning strategy. We use (lambda) over tilde (d)(1)(G) to denote the game L(d, 1)-labeling number of Gin the game Alice plays first, and use (lambda) over tilde (d)(2)(G) to denote the game L(d, 1)-labeling number of G in the game Bob plays first. In this paper, we study the game L(d, 1)-labeling numbers of graphs. We give formulas for (lambda) over tilde (d)(1)(K-n) and (lambda) over tilde (d)(2)(K-n), and give formulas for (lambda) over tilde (d)(1)(K-m,K-n) for those d with d >= max {m, n}. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3037 / 3045
页数:9
相关论文
共 50 条
  • [1] The L(j, k)-Edge-Labeling Problem on Graphs
    Shao, Zhendong
    Averbakh, Igor
    ARS COMBINATORIA, 2018, 137 : 165 - 176
  • [2] L(h, 1, 1)-labeling of outerplanar graphs
    Calamoneri, Tiziana
    Fusco, Emanuele G.
    Tan, Richard B.
    Vocca, Paola
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2009, 69 (02) : 307 - 321
  • [3] L(2,1)-Labeling of Kneser graphs and coloring squares of Kneser graphs
    Shao, Zhendong
    Averbakh, Igor
    Solis-Oba, Roberto
    DISCRETE APPLIED MATHEMATICS, 2017, 221 : 106 - 114
  • [4] L(h,1,1)-labeling of simple graphs
    Duan, Ziming
    Lv, Pingli
    Miao, Lianying
    Miao, Zhengke
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 1, 2009, : 283 - 287
  • [5] L(3,1)-labeling of circulant graphs
    Bhoumik, Soumya
    Mitra, Sarbari
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (01)
  • [6] L(2,1)-LABELING OF CIRCULANT GRAPHS
    Mitra, Sarbari
    Bhoumik, Soumya
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (01) : 143 - 155
  • [7] L(2,1)-LABELING OF TRAPEZOID GRAPHS
    Paul, S.
    Amanathulla, S. K.
    Pal, M.
    Pal, A.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2024, 14 (03): : 1254 - 1263
  • [8] L(3,2,1)-LABELING OF GRAPHS
    Chia, Ma-Lian
    Kuo, David
    Liao, Hong-ya
    Yang, Cian-Hui
    Yeh, Roger K.
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (06): : 2439 - 2457
  • [9] L(2,1)-Labeling of the Iterated Mycielski Graphs of Graphs and Some Problems Related to Matching Problems
    Dliou, Kamal
    El Boujaoui, Hicham
    Kchikech, Mustapha
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (02) : 489 - 518
  • [10] On L(2,1)-labeling of generalized Petersen graphs
    Huang, Yuan-Zhen
    Chiang, Chun-Ying
    Huang, Liang-Hao
    Yeh, Hong-Gwa
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2012, 24 (03) : 266 - 279