Motivated by a recent work of Dong, Lam and Lu concerning the sharp weighted Trudinger-Moser and Caffarelli-Kohn-Nirenberg inequalities, we derive a sharp Rellich-Sobolev inequality on R-n with n >= 5 and weighted Adams inequalities involving Hardy terms on R-4. The procedure is based on a quasi-conformal mapping type transform and decomposition into spherical harmonics since the symmetrization arguments do not work in dealing with these inequalities. (C) 2020 Elsevier Ltd. All rights reserved.
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Wayne State Univ, Dept Math, Detroit, MI 48202 USABeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Dong, Mengxia
;
Lu, Guozhen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Wayne State Univ, Dept Math, Detroit, MI 48202 USABeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
机构:
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z4, Canada
Pacific Inst Math Sci, Vancouver, BC V6T 1Z4, CanadaUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z4, Canada
Lam, Nguyen
;
Lu, Guozhen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Connecticut, Dept Math, Storrs, CT 06269 USAUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z4, Canada
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Wayne State Univ, Dept Math, Detroit, MI 48202 USABeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Dong, Mengxia
;
Lu, Guozhen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Wayne State Univ, Dept Math, Detroit, MI 48202 USABeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
机构:
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z4, Canada
Pacific Inst Math Sci, Vancouver, BC V6T 1Z4, CanadaUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z4, Canada
Lam, Nguyen
;
Lu, Guozhen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Connecticut, Dept Math, Storrs, CT 06269 USAUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z4, Canada