Deep-learning source localization using autocorrelation functions from a single hydrophone in deep ocean

被引:17
作者
Liu, Yining [1 ,2 ]
Niu, Haiqiang [1 ,2 ]
Li, Zhenglin [1 ,2 ]
Wang, Mengyuan [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Acoust, State Key Lab Acoust, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
JASA EXPRESS LETTERS | 2021年 / 1卷 / 03期
基金
中国国家自然科学基金;
关键词
CONVOLUTIONAL NEURAL-NETWORK; RANGE ESTIMATION;
D O I
10.1121/10.0003647
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In the direct arrival zone of the deep ocean, the multi-path time delays have been used for acoustic source localization. One of the challenges in conventional localization methods is to artificially determine which paths the extracted delays belong to. A convolutional neural network, taking the autocorrelation functions as the input feature directly, is proposed for source localization to avoid the path determination procedure. Since some multi-path arrivals may not be visible due to absorption in the bottom of the ocean, a data augmentation method based on a ray propagation model is proposed. Tests on simulated and real data validate the method. (C) 2021 Author(s).
引用
收藏
页数:7
相关论文
共 30 条
  • [1] [Anonymous], 2021, JASA EXPRESS LETT, V1, DOI [10.1121/10.0003647, DOI 10.1121/10.0003647]
  • [2] Machine learning in acoustics: Theory and applications
    Bianco, Michael J.
    Gerstoft, Peter
    Traer, James
    Ozanich, Emma
    Roch, Marie A.
    Gannot, Sharon
    Deledalle, Charles-Alban
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2019, 146 (05) : 3590 - 3628
  • [3] Sound source ranging using a feed-forward neural network trained with fitting-based early stopping
    Chi, Jing
    Li, Xiaolei
    Wang, Haozhong
    Gao, Dazhi
    Gerstoft, Peter
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2019, 146 (03) : EL258 - EL264
  • [4] Chollet F., Keras: Deep Learning Library for Theano and Tensorflow
  • [5] Robust passive range estimation using the waveguide invariant
    Cockrell, Kevin L.
    Schmidt, Henrik
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2010, 127 (05) : 2780 - 2789
  • [6] Moving source localization with a single hydrophone using multipath time delays in the deep ocean
    Duan, Rui
    Yang, Kunde
    Ma, Yuanliang
    Yang, Qiulong
    Li, Hui
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2014, 136 (02) : EL159 - EL165
  • [7] InceptionTime: Finding AlexNet for time series classification
    Fawaz, Hassan Ismail
    Lucas, Benjamin
    Forestier, Germain
    Pelletier, Charlotte
    Schmidt, Daniel F.
    Weber, Jonathan
    Webb, Geoffrey, I
    Idoumghar, Lhassane
    Muller, Pierre-Alain
    Petitjean, Francois
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 34 (06) : 1936 - 1962
  • [8] Convolutional neural network for single-sensor acoustic localization of a transiting broadband source in very shallow water
    Ferguson, Eric L.
    Williams, Stefan B.
    Jin, Craig T.
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2019, 146 (06) : 4687 - 4698
  • [9] Ferguson EL, 2018, 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), P2386, DOI 10.1109/ICASSP.2018.8462024
  • [10] Seabed classification using physics-based modeling and machine learninga)
    Frederick, Christina
    Villar, Soledad
    Michalopoulou, Zoi-Heleni
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2020, 148 (02) : 859 - 872