A generalization of circulant Hadamard and conference matrices

被引:3
作者
Turek, Ondrej [1 ,2 ,3 ]
Goyeneche, Dardo [4 ]
机构
[1] Czech Acad Sci, Nucl Phys Inst, Rez 25068, Czech Republic
[2] Univ Ostrava, Fac Sci, Dept Math, 30 Dubna 22, CZ-70103 Ostrava, Czech Republic
[3] Kochi Univ Technol, Lab Unified Quantum Devices, Kochi 7828502, Japan
[4] Univ Antofagasta, Fac Ciencias Basicas, Dept Fis, Casilla 170, Antofagasta, Chile
关键词
Circulant matrix; Orthogonal matrix; Circulant Hadamard conjecture; Conference matrix; ORTHOGONAL MATRICES;
D O I
10.1016/j.laa.2019.01.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and construction of circulant matrices C of order n >= 2 with diagonal entries d >= 0, off-diagonal entries +/- 1 and mutually orthogonal rows. These matrices generalize circulant conference (d = 0) and circulant Hadamard (d = 1) matrices. We demonstrate that matrices C exist for every order n and for d chosen such that n = 2d + 2, and we find all solutions C with this property. Furthermore, we prove that if C is symmetric, or n-1 is prime, or d is not an odd integer, then necessarily n = 2d+2. Finally, we conjecture that the relation n = 2d + 2 holds for every matrix C, which generalizes the circulant Hadamard conjecture. We support the proposed conjecture by computing all the existing solutions up to n = 50. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:241 / 265
页数:25
相关论文
共 25 条
[1]   Study of proper circulant weighing matrices with weight 9 [J].
Ang, Miin Huey ;
Arasu, K. T. ;
Ma, Siu Lun ;
Strassler, Yoseph .
DISCRETE MATHEMATICS, 2008, 308 (13) :2802-2809
[2]   Determination of all possible orders of weight 16 circulant weighing matrices [J].
Arasu, K. T. ;
Leung, Ka Hin ;
Ma, Siu Lun ;
Nabavi, Ali ;
Ray-Chaudhuri, D. K. .
FINITE FIELDS AND THEIR APPLICATIONS, 2006, 12 (04) :498-538
[3]  
Beth T., 1999, Encyclopedia of Mathematics and its Applications
[4]  
Borwein P., 2008, LONDON MATH SOC LECT, V352, P71, DOI DOI 10.1017/CB09780511721274.007
[5]   A NOTE ON MULTIPLIERS OF DIFFERENCE SETS [J].
BRUALDI, RA .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICS AND MATHEMATICAL, 1965, B 69 (1-2) :87-+
[6]  
Cook C. E., 1967, RADAR SIGNALS INTRO
[7]   TRACE, SYMMETRY AND ORTHOGONALITY [J].
CRAIGEN, R .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (04) :461-467
[8]  
Craigen R., 1993, AUST J COMBIN, V7, P225
[9]  
EADES P, 1976, ARS COMBINATORIA, V2, P265
[10]   Equiangular tight frames and unistochastic matrices [J].
Goyeneche, Dardo ;
Turek, Ondrej .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (24)