On the implementation of discontinuous Galerkin methods forVolterra integral equations with highly oscillatory Bessel kernels

被引:19
作者
Xiang, Shuhuang [1 ]
He, Kaixian [1 ]
机构
[1] Cent S Univ, Dept Appl Math & Software, Changsha 410083, Hunan, Peoples R China
关键词
Discontinuous Galerkin method; Bessel function; High oscillation; Volterra integral equation; Weak singularity; FILON-TYPE METHODS;
D O I
10.1016/j.amc.2012.10.073
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider implementation of discontinuous Galerkin methods for (weakly singular) Volterra integral equations of first and second kinds with highly oscillatory Bessel kernels, which cost the same operations independent of large values of frequencies. Preliminary numerical results show that the proposed method is efficient for verifying accuracy of approximate solutions. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4884 / 4891
页数:8
相关论文
共 18 条
[1]  
[Anonymous], 1964, HDB MATH FUNCTIONS
[2]  
[Anonymous], CHEBFUN VERSION 3
[3]  
Brunner, 2010, 7 LECTIRES THEORY NU
[4]  
Brunner H., 2007, OPEN PROBLEMS IN THE
[5]   Discontinuous Galerkin approximations for Volterra integral equations of the first kind [J].
Brunner, Hermann ;
Davies, Penny J. ;
Duncan, Dugald B. .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (04) :856-881
[6]   Stability and convergence of collocation schemes for retarded potential integral equations [J].
Davies, PJ ;
Duncan, DB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (03) :1167-1188
[7]   ON GALERKIN METHODS FOR ABEL-TYPE INTEGRAL-EQUATIONS [J].
EGGERMONT, PPB .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1988, 25 (05) :1093-1117
[8]   A fast algorithm for the calculation of the roots of special functions [J].
Glaser, Andreas ;
Liu, Xiangtao ;
Rokhlin, Vladimir .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (04) :1420-1438
[9]   On quadrature methods for highly oscillatory integrals and their implementation [J].
Iserles, A ;
Norsett, S .
BIT NUMERICAL MATHEMATICS, 2004, 44 (04) :755-772
[10]   Fast integration of rapidly oscillatory functions [J].
Levin, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 67 (01) :95-101