Enhanced Li2O2 Decomposition in Rechargeable Li-O2 Battery by Incorporating WO3 Nanowire Array Photocatalyst

被引:59
作者
Feng, Yaya [1 ]
Xue, Hairong [1 ]
Wang, Tao [1 ]
Gong, Hao [1 ]
Gao, Bin [1 ]
Xia, Wei [1 ]
Jiang, Cheng [1 ]
Li, Jingjing [1 ]
Huang, Xianli [1 ]
He, Jianping [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Jiangsu Key Lab Electrochem Energy Storage Techno, Coll Mat Sci & Technol, 29 Yudao St, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
WO3 nanowire array; Li2O2; oxidation; Photocatalyst; Low overpotential; Photoassisted Li-O-2 battery; CARBON NANOFIBERS; CATHODE CATALYST; RU NANOPARTICLES; OXYGEN VACANCY; LITHIUM; VOLTAGE; PERFORMANCE; OXIDATION; DISCHARGE; GRAPHENE;
D O I
10.1021/acssuschemeng.8b05944
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reducing the high charging overpotential of nonaqueous Li-O-2 batteries is very important for their energy storage ability. Herein, we propose a newly photoassisted Li-O-2 battery system, in which a WO3 nanowires array that grows on carbon textile serves as a photocatalyst on the cathode. Because of its abundant holes excited by visible light, the Li2O2 coated on WO3 nanowires can be efficiently oxidized during the charging process, resulting in the reduced charging potential and enhanced Li-O-2 battery performance. Notably, the charging potential can still maintain at 3.55 V even after 100 cycles in this photoassisted battery system, which is much lower than that of the dark state (4.4 V). These positive results indicate that the introduction of WO3 nanowires array photocatalyst provides possibilities in improving the energy conversion efficiency of the Li-O-2 battery.
引用
收藏
页码:5931 / 5939
页数:17
相关论文
共 58 条
[1]  
Balaish M., 2015, Angewandte Chemie International Edition, V127, P446
[2]   Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage [J].
Bonaccorso, Francesco ;
Colombo, Luigi ;
Yu, Guihua ;
Stoller, Meryl ;
Tozzini, Valentina ;
Ferrari, Andrea C. ;
Ruoff, Rodney S. ;
Pellegrini, Vittorio .
SCIENCE, 2015, 347 (6217)
[3]   PHOTOELECTROLYSIS AND PHYSICAL-PROPERTIES OF SEMICONDUCTING ELECTRODE WO3 [J].
BUTLER, MA .
JOURNAL OF APPLIED PHYSICS, 1977, 48 (05) :1914-1920
[4]   The oxygen vacancy in crystal phases of WO3 [J].
Chatten, R ;
Chadwick, AV ;
Rougier, A ;
Lindan, PJD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (08) :3146-3156
[5]  
Chen YH, 2013, NAT CHEM, V5, P489, DOI [10.1038/NCHEM.1646, 10.1038/nchem.1646]
[6]   A Critical Review of Li/Air Batteries [J].
Christensen, Jake ;
Albertus, Paul ;
Sanchez-Carrera, Roel S. ;
Lohmann, Timm ;
Kozinsky, Boris ;
Liedtke, Ralf ;
Ahmed, Jasim ;
Kojic, Aleksandar .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (02) :R1-R30
[7]   Systematic XPS studies of metal oxides, hydroxides and peroxides [J].
Dupin, JC ;
Gonbeau, D ;
Vinatier, P ;
Levasseur, A .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (06) :1319-1324
[8]   Layered double hydroxide modified WO3 nanorod arrays for enhanced photoelectrochemical water splitting [J].
Fan, Xiaoli ;
Gao, Bin ;
Wang, Tao ;
Huang, Xianli ;
Gong, Hao ;
Xue, Hairong ;
Guo, Hu ;
Song, Li ;
Xia, Wei ;
He, Jianping .
APPLIED CATALYSIS A-GENERAL, 2016, 528 :52-58
[9]   Quantifying the promise of lithium-air batteries for electric vehicles [J].
Gallagher, Kevin G. ;
Goebel, Steven ;
Greszler, Thomas ;
Mathias, Mark ;
Oelerich, Wolfgang ;
Eroglu, Damla ;
Srinivasan, Venkat .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (05) :1555-1563
[10]   Enhancing the Catalytic Activity of Co3O4 for Li-O2 Batteries through the Synergy of Surface/Interface/Doping Engineering [J].
Gao, Rui ;
Yang, Zhenzhong ;
Zheng, Lirong ;
Gu, Lin ;
Liu, Lei ;
Lee, Yulin ;
Hu, Zhongbo ;
Liu, Xiangfeng .
ACS CATALYSIS, 2018, 8 (03) :1955-1963