Targeting of mitochondrial reactive oxygen species production does not avert lipid-induced insulin resistance in muscle tissue from mice

被引:35
作者
Paglialunga, S. [1 ]
van Bree, B. [1 ]
Bosma, M. [1 ]
Valdecantos, M. P. [2 ]
Amengual-Cladera, E.
Jorgensen, J. A. [1 ]
van Beurden, D. [1 ]
den Hartog, G. J. M. [3 ]
Ouwens, D. M. [4 ]
Briede, J. J. [5 ]
Schrauwen, P. [1 ]
Hoeks, J. [1 ]
机构
[1] Maastricht Univ, Med Ctr, Dept Human Biol, NUTRIM Sch Nutr Toxicol & Metab, NL-6200 MD Maastricht, Netherlands
[2] Univ Navarra, Dept Nutr Food Sci Physiol & Toxicol, Navarra, Spain
[3] Maastricht Univ, Med Ctr, Dept Toxicol, NUTRIM Sch Nutr Toxicol & Metab, NL-6200 MD Maastricht, Netherlands
[4] German Diabet Ctr, Inst Clin Biochem & Pathobiochem, Dusseldorf, Germany
[5] Maastricht Univ, Med Ctr, Dept Toxicogen, GROW Sch Oncol & Dev Biol, NL-6200 MD Maastricht, Netherlands
关键词
Antioxidant treatment; High-fat high-sucrose diet; Insulin resistance; Oxidative stress; Reactive oxygen species; SkQ; HUMAN SKELETAL-MUSCLE; FATTY-ACID OXIDATION; PLASTOQUINONE DERIVATIVES; INTERRUPT EXECUTION; IN-VIVO; ROS GENERATION; LIFE-SPAN; STRESS; DYSFUNCTION; RESPIRATION;
D O I
10.1007/s00125-012-2626-x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
High-fat, high-sucrose diet (HF)-induced reactive oxygen species (ROS) levels are implicated in skeletal muscle insulin resistance and mitochondrial dysfunction. Here we investigated whether mitochondrial ROS sequestering can circumvent HF-induced oxidative stress; we also determined the impact of any reduced oxidative stress on muscle insulin sensitivity and mitochondrial function. The Skulachev ion (plastoquinonyl decyltriphenylphosphonium) (SkQ), a mitochondria-specific antioxidant, was used to target ROS production in C2C12 muscle cells as well as in HF-fed (16 weeks old) male C57Bl/6 mice, compared with mice on low-fat chow diet (LF) or HF alone. Oxidative stress was measured as protein carbonylation levels. Glucose tolerance tests, glucose uptake assays and insulin-stimulated signalling were determined to assess muscle insulin sensitivity. Mitochondrial function was determined by high-resolution respirometry. SkQ treatment reduced oxidative stress in muscle cells (-23% p < 0.05), but did not improve insulin sensitivity and glucose uptake under insulin-resistant conditions. In HF mice, oxidative stress was elevated (56% vs LF p < 0.05), an effect completely blunted by SkQ. However, HF and HF+SkQ mice displayed impaired glucose tolerance (AUC HF up 33%, p < 0.001; HF+SkQ up 22%; p < 0.01 vs LF) and disrupted skeletal muscle insulin signalling. ROS sequestering did not improve mitochondrial function. SkQ treatment reduced muscle mitochondrial ROS production and prevented HF-induced oxidative stress. Nonetheless, whole-body glucose tolerance, insulin-stimulated glucose uptake, muscle insulin signalling and mitochondrial function were not improved. These results suggest that HF-induced oxidative stress is not a prerequisite for the development of muscle insulin resistance.
引用
收藏
页码:2759 / 2768
页数:10
相关论文
共 47 条
[1]   Mitochondrial reactive oxygen species generation in obese non-diabetic and type 2 diabetic participants [J].
Abdul-Ghani, M. A. ;
Jani, R. ;
Chavez, A. ;
Molina-Carrion, M. ;
Tripathy, D. ;
DeFronzo, R. A. .
DIABETOLOGIA, 2009, 52 (04) :574-582
[2]   Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans [J].
Anderson, Ethan J. ;
Lustig, Mary E. ;
Boyle, Kristen E. ;
Woodlief, Tracey L. ;
Kane, Daniel A. ;
Lin, Chien-Te ;
Price, Jesse W., III ;
Kang, Li ;
Rabinovitch, Peter S. ;
Szeto, Hazel H. ;
Houmard, Joseph A. ;
Cortright, Ronald N. ;
Wasserman, David H. ;
Neufer, P. Darrell .
JOURNAL OF CLINICAL INVESTIGATION, 2009, 119 (03) :573-581
[3]   Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 5. SkQ1 prolongs lifespan and prevents development of traits of senescence [J].
Anisimov, V. N. ;
Bakeeva, L. E. ;
Egormin, P. A. ;
Filenko, O. F. ;
Isakova, E. F. ;
Manskikh, V. N. ;
Mikhelson, V. M. ;
Panteleeva, A. A. ;
Pasyukova, E. G. ;
Pilipenko, D. I. ;
Piskunova, T. S. ;
Popovich, I. G. ;
Roshchina, N. V. ;
Rybina, O. Yu. ;
Saprunova, V. B. ;
Samoylova, T. A. ;
Semenchenko, A. V. ;
Skulachev, M. V. ;
Spivak, I. M. ;
Tsybul'ko, E. A. ;
Tyndyk, M. L. ;
Vyssokikh, M. Yu. ;
Yurova, M. N. ;
Zabezhinsky, M. A. ;
Skulachev, V. P. .
BIOCHEMISTRY-MOSCOW, 2008, 73 (12) :1329-1342
[4]   Effects of the mitochondria-targeted antioxidant SkQ1 on lifespan of rodents [J].
Anisimov, Vladimir N. ;
Egorov, Maxim V. ;
Krasilshchikova, Marina S. ;
Lyamzaev, Konstantin G. ;
Manskikh, Vasily N. ;
Moshkin, Mikhail P. ;
Novikov, Evgeny A. ;
Popovich, Irina G. ;
Rogovin, Konstantin A. ;
Shabalina, Irina G. ;
Shekarova, Olga N. ;
Skulachev, Maxim V. ;
Titova, Tatiana V. ;
Vygodin, Vladimir A. ;
Vyssokikh, Mikhail Yu. ;
Yurova, Maria N. ;
Zabezhinsky, Mark A. ;
Skulachev, Vladimir P. .
AGING-US, 2011, 3 (11) :1110-1119
[5]   Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 1. Cationic plastoquinone derivatives: Synthesis and in vitro studies [J].
Antonenko, Y. N. ;
Avetisyan, A. V. ;
Bakeeva, L. E. ;
Chernyak, B. V. ;
Chertkov, V. A. ;
Domnina, L. V. ;
Ivanova, O. Yu. ;
Izyumov, D. S. ;
Khailova, L. S. ;
Klishin, S. S. ;
Korshunova, G. A. ;
Lyamzaev, K. G. ;
Muntyan, M. S. ;
Nepryakhina, O. K. ;
Pashkovskaya, A. A. ;
Pletjushkina, O. Yu. ;
Pustovidko, A. V. ;
Roginsky, V. A. ;
Rokitskaya, T. I. ;
Ruuge, E. K. ;
Saprunova, V. B. ;
Severina, I. I. ;
Simonyan, R. A. ;
Skulachev, I. V. ;
Skulachev, M. V. ;
Sumbatyan, N. V. ;
Sviryaeva, I. V. ;
Tashlitsky, V. N. ;
Vassiliev, J. M. ;
Vyssokikh, M. Yu. ;
Yaguzhinsky, L. S. ;
Zamyatnin, A. A., Jr. ;
Skulachev, V. P. .
BIOCHEMISTRY-MOSCOW, 2008, 73 (12) :1273-1287
[6]   Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 2. Treatment of some ROS- and Age-related diseases (heart arrhythmia, heart infarctions, kidney ischemia, and stroke) [J].
Bakeeva, L. E. ;
Barskov, I. V. ;
Egorov, M. V. ;
Isaev, N. K. ;
Kapelko, V. I. ;
Kazachenko, A. V. ;
Kirpatovsky, V. I. ;
Kozlovsky, S. V. ;
Lakomkin, V. L. ;
Levina, S. B. ;
Pisarenko, O. I. ;
Plotnikov, E. Y. ;
Saprunova, V. B. ;
Serebryakova, L. I. ;
Skulachev, M. V. ;
Stelmashook, E. V. ;
Studneva, I. M. ;
Tskitishvili, O. V. ;
Vasilyeva, A. K. ;
Victorov, I. V. ;
Zorov, D. B. ;
Skulachev, V. P. .
BIOCHEMISTRY-MOSCOW, 2008, 73 (12) :1288-1299
[7]   Fatty acids acutely enhance insulin-induced oxidative stress and cause insulin resistance by increasing mitochondrial reactive oxygen species (ROS) generation and nuclear factor-κB inhibitor (IκB)-nuclear factor-κB (NFκB) activation in rat muscle, in the absence of mitochondrial dysfunction [J].
Barazzoni, R. ;
Zanetti, M. ;
Cappellari, G. Gortan ;
Semolic, A. ;
Boschelle, M. ;
Codarin, E. ;
Pirulli, A. ;
Cattin, L. ;
Guarnieri, G. .
DIABETOLOGIA, 2012, 55 (03) :773-782
[8]   Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice [J].
Bonnard, Charlotte ;
Durand, Annie ;
Peyrol, Simone ;
Chanseaume, Emilie ;
Chauvin, Marie-Agnes ;
Morio, Beatrice ;
Vidal, Hubert ;
Rieusset, Jennifer .
JOURNAL OF CLINICAL INVESTIGATION, 2008, 118 (02) :789-800
[9]   Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle [J].
Garcia-Roves, Pablo ;
Huss, Janice M. ;
Han, Dong-Ho ;
Hancock, Chad R. ;
Iglesias-Gutierrez, Eduardo ;
Chen, May ;
Holloszy, John O. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (25) :10709-10713
[10]   Redox paradox - Insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets [J].
Goldstein, BJ ;
Kalyankar, M ;
Wu, XD .
DIABETES, 2005, 54 (02) :311-321