The Synchronization of Hyperchaotic Systems Using a Novel Interval Type-2 Fuzzy Neural Network Controller

被引:7
|
作者
Tien-Loc Le [1 ]
Van-Binh Ngo [1 ]
机构
[1] Lac Hong Univ, Fac Mechatron & Elect, Bien Hoa 810000, Dong Nai, Vietnam
来源
IEEE ACCESS | 2022年 / 10卷
关键词
Synchronization; Fuzzy logic; Uncertainty; Fuzzy neural networks; Fuzzy control; Optimization; Heuristic algorithms; 5-D hyperchaotic systems; fuzzy neural network; type-2 fuzzy system; 3DGMFs; Jaya algorithm; ROBUST SYNCHRONIZATION; CHAOTIC SYSTEMS; LOGIC SYSTEMS; ALGORITHM; DESIGN;
D O I
10.1109/ACCESS.2022.3211515
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposed a novel interval type-2 fuzzy neural network controller (NT2FC) to synchronize 5-D hyperchaotic systems with noise disturbance and system uncertainties. In the proposed controller, the type 2 fuzzy set is designed with the 3-dimensional Gaussian membership functions (3DGMFs) to increase the system's ability to respond to uncertainty. The parameters of the NT2FC controller are updated online via adaptation laws, which are built based on the gradient descent approach. The system stability is ensured through the Lyapunov stability analysis. In addition, the modified Jaya algorithm (MJA) is applied to optimize the learning rates in adaptation laws. Finally, the efficiency of the proposed NT2FC is examined by the numerical simulation of the hyperchaotic system's synchronization.
引用
收藏
页码:105966 / 105982
页数:17
相关论文
共 50 条
  • [31] Obstacle Avoidance Method for Wheeled Mobile Robots Using Interval Type-2 Fuzzy Neural Network
    Kim, Cheol-Joong
    Chwa, Dongkyoung
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (03) : 677 - 687
  • [32] Generalized Type-2 Fuzzy Systems for controlling a mobile robot and a performance comparison with Interval Type-2 and Type-1 Fuzzy Systems
    Sanchez, Mauricio A.
    Castillo, Oscar
    Castro, Juan R.
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (14) : 5904 - 5914
  • [33] Parallel Interval Type-2 Subsethood Neural Fuzzy Inference System
    Sumati, Vuppuluri
    Chellapilla, Patvardhan
    Paul, Sandeep
    Singh, Lotika
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 60 : 156 - 168
  • [34] A modified interval type-2 Takagi-Sugeno fuzzy neural network and its convergence analysis
    Gao, Tao
    Bai, Xiao
    Wang, Chen
    Zhang, Liang
    Zheng, Jin
    Wang, Jian
    PATTERN RECOGNITION, 2022, 131
  • [35] Design and application of interval type-2 fuzzy neural network systems optimized with hybrid algorithms
    Chen, Yang
    INFORMATION SCIENCES, 2025, 689
  • [36] The Reduction of Interval Type-2 LR Fuzzy Sets
    Chen, Chao-Lieh
    Chen, Shen-Chien
    Kuo, Yau-Hwang
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (04) : 840 - 858
  • [37] Using a Type-2 Neural Fuzzy Controller for Navigation Control of Evolutionary Robots
    Lin, Cheng-Jian
    Lin, Hsueh-Yi
    Yu, Cheng-Yi
    2018 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2018), 2018, : 306 - 309
  • [38] Cooperative strategy for constructing interval type-2 fuzzy neural network
    Han, Hong-Gui
    Li, Jia-Ming
    Wu, Xiao-Long
    Qiao, Jun-Fei
    NEUROCOMPUTING, 2019, 365 : 249 - 260
  • [39] A novel single-input interval type-2 fractional-order fuzzy controller for systems with parameter uncertainty
    Aliasghary, Mortaza
    Mohammadikia, Reza
    SOFT COMPUTING, 2022, 26 (10) : 4961 - 4977
  • [40] Prediction Interval Identification Using Interval Type-2 Fuzzy Logic Systems: Lake Water Level Prediction Using Remote Sensing Data
    Khanesar, M. A.
    Branson, David T.
    IEEE SENSORS JOURNAL, 2021, 21 (12) : 13815 - 13827