Crystal structure of a glycyl radical enzyme from Archaeoglobus fulgidus

被引:20
作者
Lehtiö, L
Grossmann, JG
Kokona, B
Fairman, R
Goldman, A
机构
[1] Abo Akad Univ, Natl Grad Sch Informat & Struct Biol, FI-20520 Turku, Finland
[2] CCLRC, Daresbury Lab, Ctr Synchrotron Radiat, Warrington WA4 4AD, Cheshire, England
[3] Haverford Coll, Dept Biol, Haverford, PA 19041 USA
[4] Univ Helsinki, Inst Biotechnol, FIN-00014 Helsinki, Finland
基金
美国国家科学基金会; 芬兰科学院;
关键词
pyruvate formate lyase; glycerol dehydratase; PFL2; glycyl radical; hyperthermophile;
D O I
10.1016/j.jmb.2005.12.049
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have solved the crystal structure of a PFL2 from Archaeglobus fulgidus at 2.9 angstrom resolution. Of the three previously solved enzyme structures of glycyl radical enzymes, pyruvate formate lyase (PFL), anaerobic ribonucleotide reductase and glycerol dehydratase (GD), the last one is clearly most similar to PFL2. We observed electron density in the active site of PFL2, which we modelled as glycerol. The orientation of the glycerol is different from that in GD, and changes in the active site indicate that the actual substrate of PFL2 is bigger than a glycerol molecule, but sequence and structural homology suggest that PFL2 may be a dehydratase. Crystal packing, solution X-ray scattering and ultracentrifugation experiments show that PFL2 is tetrarneric, unlike otherglycyl radical enzymes. A.fidgichis is a hyperthermophile and PFL2 appears to be stabilized by several factors including an increased number of ion pairs, differences in buried charges, a truncated N terminus, anchoring of loops and N terminus via salt-bridges, changes in the oligomeric interface and perhaps also the higher oligomerization state of the protein. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:221 / 235
页数:15
相关论文
共 48 条
  • [1] Subunit composition of the glycyl radical enzyme p-hydroxyphenylacetate decarboxylase -: A small subunit, HpdC, is essential for catalytic activity
    Andrei, PI
    Pierik, AJ
    Zauner, S
    Andrei-Selmer, LC
    Selmer, T
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 2004, 271 (11): : 2225 - 2230
  • [2] Becker A, 1999, NAT STRUCT BIOL, V6, P969
  • [3] Stepwise adaptations of citrate synthase to survival at life's extremes - From psychrophile to hyperthermophile
    Bell, GS
    Russell, RJM
    Connaris, H
    Hough, DW
    Danson, MJ
    Taylor, GL
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (24): : 6250 - 6260
  • [4] Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme
    Berkovitch, F
    Nicolet, Y
    Wan, JT
    Jarrett, JT
    Drennan, CL
    [J]. SCIENCE, 2004, 303 (5654) : 76 - 79
  • [5] A novel octameric AMP-forming acetyl-CoA synthetase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum
    Bräsen, C
    Urbanke, C
    Schönheit, P
    [J]. FEBS LETTERS, 2005, 579 (02) : 477 - 482
  • [6] Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
  • [7] CHANTRENNE H, 1950, J BIOL CHEM, V187, P757
  • [8] Rational engineering of enzyme stability
    Eijsink, VGH
    Bjork, A
    Gåseidnes, S
    Sirevåg, R
    Synstad, B
    van den Burg, B
    Vriend, G
    [J]. JOURNAL OF BIOTECHNOLOGY, 2004, 113 (1-3) : 105 - 120
  • [9] Farias Savio T, 2003, Genet Mol Res, V2, P383
  • [10] Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes
    Fukui, T
    Atomi, H
    Kanai, T
    Matsumi, R
    Fujiwara, S
    Imanaka, T
    [J]. GENOME RESEARCH, 2005, 15 (03) : 352 - 363