Approximation of common fixed points for a family of finite nonexpansive mappings in Banach space

被引:15
作者
Wu, DP [1 ]
Chang, SS
Yuan, GX
机构
[1] Yibin Univ, Dept Math, Yibin 644007, Sichuan, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
[3] Chinese Acad Sci, Sch Management, Grad Sch, Beijing 100080, Peoples R China
[4] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
关键词
nonexpansive mapping; iterative sequence; fixed point; uniformly smooth Banach space; normalized duality mapping;
D O I
10.1016/j.na.2005.03.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some sufficient and necessary conditions for the iterative sequence converging to a common fixed points for a family of nonexpansive mappings in Banach spaces are obtained. The results presented in this paper not only give an affirmative answer to Halpern's open question and a partial answer to the Reich's open question but also extend and improve some recent results of Bauschke [J. Math. Anal. Appl. 202 (1996) 150-159], Halpern [Bull. Amer. Math. Soc. 73 (1967) 957-961], Lions [C. R. Acad. Sci. Paris, Ser A 284 (1977) 1357-1359], Reich [J. Math. Anal. Appl. 75 (1980) 128-292; PanAmer. Math. J. 4 (1994) 23-28], Shioji and Takahashi [Proc. Amer. Math. Soc. 125(12) (1997) 3641-3645], Takahashi et al. [J. Approximation Theory 91 (1997) 386-397; Sci. Math. Jap. 56(3) (2002) 417-422], Wittmann [Arch. Math. 58 (1992) 486-491] and Xu [Bull. Austral. Math. Soc. 65 (2002) 109-113; Commun. Appl. Nonlinear Anal. 10 (2003) 67-75]. As applications, at the end of the paper, we utilize our results to study the feasibility problem. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:987 / 999
页数:13
相关论文
共 18 条
[1]   The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space [J].
Bauschke, HH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 202 (01) :150-159
[2]  
BROWDER FE, 1967, ARCH RATION MECH AN, V24, P82
[3]   Some problems and results in the study of nonlinear analysis [J].
Chang, SS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (07) :4197-4208
[4]  
Chang SS., 2002, ITERATIVE METHODS NO
[6]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[7]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&
[8]  
Kitahara S., 1993, TOPOL METHOD NONL AN, V2, P333
[9]  
LIONS PL, 1977, CR ACAD SCI A MATH, V284, P1357
[10]  
REICH S, 1980, J MATH ANAL APPL, V75, P128