The Real Density Matrix

被引:12
作者
Havel, Timothy F. [1 ]
机构
[1] MIT, Dept Nucl Engn, Cambridge, MA 02139 USA
关键词
Density matrix; superoperator; Hadamard product; nuclear magnetic resonance; product operator formalism; Pauli algebra;
D O I
10.1023/A:1024026700444
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a nonsymmetric real matrix which contains all the information that the usual Hermitian density matrix does, and which has exactly the same tensor product structure. The properties of this matrix are analyzed in detail in the case of multi-qubit (e.g., spin = 1/2) systems, where the transformation between the real and Hermitian density matrices is given explicitly as an operator sum, and used to convert the essential equations of the density matrix formalism into the real domain.
引用
收藏
页码:511 / 538
页数:28
相关论文
共 22 条
[1]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[2]  
Baylis W.E., 1999, ELECTRODYNAMICS MODE
[3]  
BLOCH F, 1946, PHYS REV, V70, P460, DOI 10.1103/PhysRev.70.460
[4]  
Doran C., 2003, GEOMETRIC ALGEBRA PH, DOI [10.1017/CBO9780511807497, DOI 10.1017/CBO9780511807497]
[5]  
Ernst R. R., 1987, PRINCIPLES NUCL MAGN
[6]   GEOMETRICAL REPRESENTATION OF THE SCHRODINGER EQUATION FOR SOLVING MASER PROBLEMS [J].
FEYNMAN, RP ;
VERNON, FL ;
HELLWARTH, RW .
JOURNAL OF APPLIED PHYSICS, 1957, 28 (01) :49-52
[7]   Computing local invariants of quantum-bit systems [J].
Grassl, M ;
Rotteler, M ;
Beth, T .
PHYSICAL REVIEW A, 1998, 58 (03) :1833-1839
[8]  
Havel T. F., 2001, LECT NOTES ARTIF INT, V2061, P228
[9]  
Havel T.F., 2002, CONT MATH, V305, P81
[10]  
Havel T. F., 1997, LECT NOTES ARTIF INT, V1360, P102