Energy and exergy analyses of direct ammonia solid oxide fuel cell integrated with gas turbine power cycle

被引:61
|
作者
Ishak, F. [1 ]
Dincer, I. [1 ]
Zamfirescu, C. [1 ]
机构
[1] Univ Ontario, Inst Technol, Fac Engn & Appl Sci, Oshawa, ON L1H 7K4, Canada
关键词
Ammonia; Efficiency; Energy; Exergy; Hydrogen; Solid oxide fuel cell; THERMODYNAMIC ANALYSIS; PERFORMANCE ANALYSIS; SOFC; ELECTROLYTE; MODEL;
D O I
10.1016/j.jpowsour.2012.03.083
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study presents the integration of direct ammonia solid oxide fuel cell with a gas turbine (DA-SOFC/GT) in a novel combined cooling, heating and power (CHCP) cycle. The integration strategy is compared for oxygen ion-conducting solid oxide fuel cells (SOFC-O) and hydrogen proton-conducting solid oxide fuel cells (SOFC-H). Unlike hybrid SOFC-absorption heat pumps, the current system is designed to exploit the refrigeration properties of ammonia to provide cooling with minimal bearing on complexity and capital cost. A system analysis is developed to cover both electrochemical and thermodynamic modelling. A detailed parametric study is also conducted to investigate the effects of varying the operating conditions and parameters on the energy and exergy efficiencies and the overall system performance. The results reveal that the SOFC-H integrated system offers better performance than that with the SOFC-O option. At an operating temperature of 1073 K and a pressure of 500 kPa, the respective energy and exergy efficiencies of the SOFC-H integrated cycle reach 81.1% and 74.3% compared to 76.7% and 69.9% for the SOFC-O. Under the same operating conditions, the cooling effectiveness of the system with both SOFC types becomes 14.7% based on the lower heating value (LHV) of ammonia. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 50 条
  • [41] Exergy based performance analysis of a solid oxide fuel cell and steam injected gas turbine hybrid power system
    Motahar, Sadegh
    Alemrajabi, Ali Akbar
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (05) : 2396 - 2407
  • [42] Integration of A Solid Oxide Fuel Cell into A 10 MW Gas Turbine Power Plant
    Cheddie, Denver F.
    ENERGIES, 2010, 3 (04) : 754 - 769
  • [43] Energy and exergy analysis of simple solid-oxide fuel-cell power systems
    Chan, SH
    Low, CF
    Ding, OL
    JOURNAL OF POWER SOURCES, 2002, 103 (02) : 188 - 200
  • [44] Thermodynamic modeling of a gas turbine cycle combined with a solid oxide fuel cell
    Haseli, Y.
    Dincer, I.
    Naterer, G. F.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (20) : 5811 - 5822
  • [45] Conception and thermo-economic performance investigation of a novel solid oxide fuel cell/ gas turbine/Kalina cycle cascade system using ammonia-water as fuel
    Du, Yang
    Zhang, Yicen
    Lou, Juwei
    Wang, Jiangfeng
    Zhao, Pan
    APPLIED THERMAL ENGINEERING, 2024, 239
  • [46] Energy and Exergy Analysis of an Ammonia Fuel Cell Integrated System for Marine Vessels
    Duong, Phan Anh
    Ryu, Borim
    Kim, Chongmin
    Lee, Jinuk
    Kang, Hokeun
    ENERGIES, 2022, 15 (09)
  • [47] Energetic Performance Analysis of a Gas Turbine Cycle Integrated With Solid Oxide Fuel Cells
    Dincer, Ibrahim
    Rosen, Marc A.
    Zamfirescu, Calin
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2009, 131 (03): : 0320011 - 03200111
  • [48] Ammonia to power: Advancing direct ammonia solid oxide fuel cells through experimental and theoretical studies
    Elmutasim, Omer
    Giddey, Sarbjit
    Dhawale, Dattatray S.
    Bhattacharya, Sankar
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 96 : 192 - 209
  • [49] Combined solid oxide fuel cell, micro-gas turbine and organic Rankine cycle for power generation (SOFC-MGT-ORC)
    Ebrahimi, Masood
    Moradpoor, Iraj
    ENERGY CONVERSION AND MANAGEMENT, 2016, 116 : 120 - 133
  • [50] Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)-Gas Turbine System
    Calise, F.
    d'Accadia, M. Dentice
    Palombo, A.
    Vanoli, L.
    ENERGY, 2006, 31 (15) : 3278 - 3299