Energy and exergy analyses of direct ammonia solid oxide fuel cell integrated with gas turbine power cycle

被引:61
|
作者
Ishak, F. [1 ]
Dincer, I. [1 ]
Zamfirescu, C. [1 ]
机构
[1] Univ Ontario, Inst Technol, Fac Engn & Appl Sci, Oshawa, ON L1H 7K4, Canada
关键词
Ammonia; Efficiency; Energy; Exergy; Hydrogen; Solid oxide fuel cell; THERMODYNAMIC ANALYSIS; PERFORMANCE ANALYSIS; SOFC; ELECTROLYTE; MODEL;
D O I
10.1016/j.jpowsour.2012.03.083
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This study presents the integration of direct ammonia solid oxide fuel cell with a gas turbine (DA-SOFC/GT) in a novel combined cooling, heating and power (CHCP) cycle. The integration strategy is compared for oxygen ion-conducting solid oxide fuel cells (SOFC-O) and hydrogen proton-conducting solid oxide fuel cells (SOFC-H). Unlike hybrid SOFC-absorption heat pumps, the current system is designed to exploit the refrigeration properties of ammonia to provide cooling with minimal bearing on complexity and capital cost. A system analysis is developed to cover both electrochemical and thermodynamic modelling. A detailed parametric study is also conducted to investigate the effects of varying the operating conditions and parameters on the energy and exergy efficiencies and the overall system performance. The results reveal that the SOFC-H integrated system offers better performance than that with the SOFC-O option. At an operating temperature of 1073 K and a pressure of 500 kPa, the respective energy and exergy efficiencies of the SOFC-H integrated cycle reach 81.1% and 74.3% compared to 76.7% and 69.9% for the SOFC-O. Under the same operating conditions, the cooling effectiveness of the system with both SOFC types becomes 14.7% based on the lower heating value (LHV) of ammonia. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 50 条
  • [1] Energy and exergy analyses of a novel ammonia combined power plant operating with gas turbine and solid oxide fuel cell systems
    Ezzat, M. F.
    Dincer, I.
    ENERGY, 2020, 194
  • [2] Energy and exergy based performance analyses of a solid oxide fuel cell integrated combined cycle power plant
    Gogoi, T. K.
    Sarmah, P.
    Nath, D. Deb
    ENERGY CONVERSION AND MANAGEMENT, 2014, 86 : 507 - 519
  • [3] Energy and exergy analyses of a combined ammonia-fed solid oxide fuel cell system for vehicular applications
    Baniasadi, Ehsan
    Dincer, Ibrahim
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (17) : 11128 - 11136
  • [4] Energy, exergy and economic analysis of an integrated solid oxide fuel cell - gas turbine - organic Rankine power generation system
    Eveloy, Valerie
    Karunkeyoon, Wirinya
    Rodgers, Peter
    Al Alili, Ali
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (31) : 13843 - 13858
  • [5] A new direct ammonia solid oxide fuel cell and gas turbine based integrated system for electric rail transportation
    Al-Hamed, K. H. M.
    Dincer, I
    ETRANSPORTATION, 2019, 2
  • [6] Analysis and performance assessment of a new solar-based multigeneration system integrated with ammonia fuel cell and solid oxide fuel cell-gas turbine combined cycle
    Siddiqui, Osamah
    Dincer, Ibrahim
    JOURNAL OF POWER SOURCES, 2017, 370 : 138 - 154
  • [7] Technical analysis of a hybrid solid oxide fuel cell/gas turbine cycle
    Leal, Elisangela Martins
    Bortolaia, Luis Antonio
    Leal Junior, Amauri Menezes
    ENERGY CONVERSION AND MANAGEMENT, 2019, 202
  • [8] Energy and Exergy Analyses of a Solid Oxide Fuel Cell-Gas Turbine-Organic Rankine Cycle Power Plant with Liquefied Natural Gas as Heat Sink
    Ahmadi, Mohammad H.
    Sadaghiani, Mirhadi S.
    Pourfayaz, Fathollah
    Ghazvini, Mahyar
    Mahian, Omid
    Mehrpooya, Mehdi
    Wongwises, Somchai
    ENTROPY, 2018, 20 (07):
  • [9] Exergy analysis of a gas turbine cycle with steam generation for methane conversion within solid oxide fuel cells
    Granovskii, Mikhail
    Dincer, Ibrahim
    Rosen, Marc A.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2008, 5 (03):
  • [10] Energy and exergy analyses of an ethanol-fueled solid oxide fuel cell for a trigeneration system
    Tippawan, Phanicha
    Arpornwichanop, Amornchai
    Dincer, Ibrahim
    ENERGY, 2015, 87 : 228 - 239