INTERSECTING FAMILIES WITH SUNFLOWER SHADOWS

被引:0
作者
Frankl, P. [1 ]
Wang, J. [2 ]
机构
[1] Alfred Renyi Inst Math, Budapest, Hungary
[2] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R China
基金
英国科研创新办公室;
关键词
t-intersecting family; shadow; sunflower; Bollobas set-pair inequality; SYSTEMS; THEOREMS;
D O I
10.1007/s10474-022-01269-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A family F of k-subsets of {1,2, ..., n}is called t-intersecting if vertical bar F boolean AND F'vertical bar >= t for all F, F' is an element of F. A set E is called an r-sunflower shadow of F if one can choose r members F-1, F2, ..., F-r of F containing E and F-1 \ E, F-2 \ E, ..., F-r \ E are pairwise disjoint. Let D(n, k, t, l, r) = {D is an element of (([n])(k)) : vertical bar D boolean AND [t + (2r - 2)l]vertical bar >= t + (r - 1)l}. Motivated by our recent work [6] on intersecting families without unique shadow, we show that for l <= t, k >= t + (r - 1)l and n >= n(0)(k), D(n, k, t, l, r) is the only family attaining the maximum size among all t-intersecting families with all their lth shadows being r-sunflower.
引用
收藏
页码:260 / 268
页数:9
相关论文
共 50 条
  • [1] Intersecting families with sunflower shadows
    P. Frankl
    J. Wang
    Acta Mathematica Hungarica, 2022, 168 : 260 - 268
  • [2] Intersecting families without unique shadow
    Frankl, Peter
    Wang, Jian
    COMBINATORICS PROBABILITY AND COMPUTING, 2024, 33 (01) : 91 - 109
  • [3] On symmetric intersecting families
    Ellis, David
    Kalai, Gil
    Narayanan, Bhargav
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 86
  • [4] Regular intersecting families
    Ihringer, Ferdinand
    Kupavskii, Andrey
    DISCRETE APPLIED MATHEMATICS, 2019, 270 : 142 - 152
  • [5] Stability of intersecting families
    Huang, Yang
    Peng, Yuejian
    EUROPEAN JOURNAL OF COMBINATORICS, 2024, 115
  • [6] Almost intersecting families
    Frankl, Peter
    Kupavskii, Andrey
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (02)
  • [7] Counting Intersecting and Pairs of Cross-Intersecting Families
    Frankl, Peter
    Kupavskii, Andrey
    COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (01) : 60 - 68
  • [8] ALMOST INTERSECTING FAMILIES OF SETS
    Gerbner, Daniel
    Lemons, Nathan
    Palmer, Cory
    Patkos, Balazs
    Szecsi, Vajk
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (04) : 1657 - 1669
  • [9] Fractional Cross Intersecting Families
    Mathew, Rogers
    Ray, Ritabrata
    Srivastava, Shashank
    GRAPHS AND COMBINATORICS, 2021, 37 (02) : 471 - 484
  • [10] THE STRUCTURE OF LARGE INTERSECTING FAMILIES
    Kostochka, Alexandr
    Mubayi, Dhruv
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (06) : 2311 - 2321