Maximal masses of white dwarfs for polytropes in R2 gravity and theoretical constraints

被引:18
作者
Astashenok, A., V [1 ]
Odintsov, S. D. [2 ,3 ]
Oikonomou, V. K. [4 ]
机构
[1] I Kant Balt Fed Univ, Inst Phys Math & IT, Kaliningrad 236041, Russia
[2] ICREA, Passeig Luis Co 23, Barcelona 08010, Spain
[3] CSIC, Inst Space Sci ICE, C Can Magrans S-N, Barcelona 08193, Spain
[4] Aristotle Univ Thessaloniki, Dept Phys, Thessaloniki 54124, Greece
关键词
D O I
10.1103/PhysRevD.106.124010
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We examine the Chandrasekhar limit for white dwarfs in f(R) gravity, with a simple polytropic equation of state describing stellar matter. We use the most popular f(R) gravity model, namely the f(R) = R + alpha R2 gravity, and calculate the parameters of the stellar configurations with polytropic equation of state of the form p = K rho 1+1/n for various values of the parameter n. In order to simplify our analysis we use the equivalent Einstein frame form of R2-gravity which is basically a scalar-tensor theory with well-known potential for the scalar field. In this description one can use simple approximations for the scalar field phi leaving only the potential term for it. Our analysis indicates that for the nonrelativistic case with n = 3/2, discrepancies between the R2-gravity and general relativity can appear only when the parameter alpha of the R2 term, takes values close to maximal limit derived from the binary pulsar data namely alpha max = 5 x 1015 cm2. Thus, the study of low-mass white dwarfs can hardly give restrictions on the parameter alpha. For relativistic polytropes with n = 3 we found that Chandrasekhar limit can in principle change for smaller alpha values. The main conclusion from our calculations is the existence of white dwarfs with large masses ''1.33M circle dot, which can impose stricter limits on the parameter alpha for the R2 gravity model. Specifically, our estimations on the parameter alpha of the R2 model is alpha '' 1013 cm2.
引用
收藏
页数:11
相关论文
共 45 条
  • [1] Constraints on perturbative f(R) gravity via neutron stars
    Arapoglu, Savas
    Deliduman, Cemsinan
    Eksi, K. Yavuz
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2011, (07):
  • [2] Causal limit of neutron star maximum mass in f(R) gravity in view of GW190814
    Astashenok, A. V.
    Capozziello, S.
    Odintsov, S. D.
    Oikonomou, V. K.
    [J]. PHYSICS LETTERS B, 2021, 816
  • [3] Extended gravity description for the GW190814 supermassive neutron star
    Astashenok, A., V
    Capozziello, S.
    Odintsov, S. D.
    Oikonomou, V. K.
    [J]. PHYSICS LETTERS B, 2020, 811
  • [4] The realistic models of relativistic stars in f (R) = R plus αR2 gravity
    Astashenok, Artyom V.
    Odintsov, Sergei D.
    de la Cruz-Dombriz, Alvaro
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (20)
  • [5] Extreme neutron stars from Extended Theories of Gravity
    Astashenok, Artyom V.
    Capozziello, Salvatore
    Odintsov, Sergei D.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (01):
  • [6] Maximal neutron star mass and the resolution of the hyperon puzzle in modified gravity
    Astashenok, Artyom V.
    Capozziello, Salvatore
    Odintsov, Sergei D.
    [J]. PHYSICAL REVIEW D, 2014, 89 (10)
  • [7] Further stable neutron star models from f(R) gravity
    Astashenok, Artyom V.
    Capozziello, Salvatore
    Odintsov, Sergei D.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (12):
  • [8] Mass-radius relation for neutron stars in f(R) gravity
    Capozziello, Salvatore
    De Laurentis, Mariafelicia
    Farinelli, Ruben
    Odintsov, Sergei D.
    [J]. PHYSICAL REVIEW D, 2016, 93 (02)
  • [9] Extended Theories of Gravity
    Capozziello, Salvatore
    De Laurentis, Mariafelicia
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2011, 509 (4-5): : 167 - 320
  • [10] Capozziello S, 2011, FUND THEOR PHYS, V170, P1, DOI 10.1007/978-94-007-0165-6_1