HIV1-Human Protein-protein Interaction Prediction Based on Interface Architecture Similarity

被引:0
|
作者
Zhao, Chunyu [1 ]
Zang, Yizhou [2 ]
Quan, Wei [2 ]
Hu, Xiaohua
Sacan, Ahmet [3 ]
机构
[1] Childrens Hosp Philadelphia, PennCHOP Microbiome Program, Philadelphia, PA 19104 USA
[2] Drexel Univ, Coll Comp & Informat, Philadelphia, PA 19104 USA
[3] Drexel Univ, Sch Biomed Engn Sci & Hlth Syst, Philadelphia, PA 19104 USA
来源
2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM) | 2017年
关键词
protein-protein interaction; protein structure alignment; protein interface architecture; HIV-1; IMMUNODEFICIENCY-VIRUS TYPE-1; INTERACTION DATABASE; SPACE;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we computationally predicted the interactions between HIV-1 and human proteins, based on the hypothesis that proteins with similar interface architecture share similar interaction partners. Evolution - aware protein structural alignment method UniAlign was used to calculate the similarity between two protein interface architectures. Using experimentally verified HIV-1, human protein-protein interactions data, we first selected 12 features, including geometric similarity, conversion similarity etc.; then trained a support vector machine (SVM) with Gaussian kernel for the binary classification problem: whether a given protein pairs 'interact' or `no' interact'. We used the trained and tuned SVM classifier to discover potential novel HIV-1 interacting partners for human proteins. Many predicted interactions had significant literature support, and we modeled the novel 3D interacting complex for HIV-1 envelope gp120 and gp41 proteins. We provided the first structural evidence for those interactions.
引用
收藏
页码:97 / 100
页数:4
相关论文
共 50 条
  • [31] LocFuse: Human protein-protein interaction prediction via classifier fusion using protein localization information
    Zahiri, Javad
    Mohammad-Noori, Morteza
    Ebrahimpour, Reza
    Saadat, Samaneh
    Bozorgmehr, Joseph H.
    Goldberg, Tatyana
    Masoudi-Nejad, Ali
    GENOMICS, 2014, 104 (06) : 496 - 503
  • [32] A general protein-protein interaction extraction architecture based on word representation and feature selection
    Jiang, Zhenchao
    Li, Lishuang
    Huang, Degen
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 14 (03) : 276 - 291
  • [33] Protein-protein interaction and site prediction using transfer learning
    Liu, Tuoyu
    Gao, Han
    Ren, Xiaopu
    Xu, Guoshun
    Liu, Bo
    Wu, Ningfeng
    Luo, Huiying
    Wang, Yuan
    Tu, Tao
    Yao, Bin
    Guan, Feifei
    Teng, Yue
    Huang, Huoqing
    Tian, Jian
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (06)
  • [34] Protein-Protein Interaction Prediction via Graph Signal Processing
    Colonnese, Stefania
    Petti, Manuela
    Farina, Lorenzo
    Scarano, Gaetano
    Cuomo, Francesca
    IEEE ACCESS, 2021, 9 : 142681 - 142692
  • [35] Prediction of protein-protein interaction sites using patch analysis
    Jones, S
    Thornton, JM
    JOURNAL OF MOLECULAR BIOLOGY, 1997, 272 (01) : 133 - 143
  • [36] Normalized L3-based link prediction in protein-protein interaction networks
    Yuen, Ho Yin
    Jansson, Jesper
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [37] Some Remarks on Prediction of Protein-Protein Interaction with Machine Learning
    Zhang, Shao-Wu
    Wei, Ze-Gang
    MEDICINAL CHEMISTRY, 2015, 11 (03) : 254 - 264
  • [38] Prediction of Protein-Protein Interaction Types Using the Decision Templates
    Chen, Wei
    Zhang, Shao-Wu
    Cheng, Yong-Mei
    2009 FOURTH INTERNATIONAL CONFERENCE ON BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PROCEEDINGS, 2009, : 93 - 98
  • [39] AutoPPI: An Ensemble of Deep Autoencoders for Protein-Protein Interaction Prediction
    Czibula, Gabriela
    Albu, Alexandra-Ioana
    Bocicor, Maria Iuliana
    Chira, Camelia
    ENTROPY, 2021, 23 (06)
  • [40] Densest subgraph-based methods for protein-protein interaction hot spot prediction
    Ruiming Li
    Jung-Yu Lee
    Jinn-Moon Yang
    Tatsuya Akutsu
    BMC Bioinformatics, 23