Machine Learning of Designed Translational Control Allows Predictive Pathway Optimization in Escherichia coli

被引:82
作者
Jervis, Adrian J. [1 ,2 ]
Carbonell, Pablo [1 ,2 ]
Vinaixa, Maria [1 ,2 ]
Dunstan, Mark S. [1 ,2 ]
Hollywood, Katherine A. [1 ,2 ]
Robinson, Christopher J. [1 ,2 ]
Rattray, Nicholas J. W. [4 ]
Yan, Cunyu [1 ,2 ]
Swainston, Neil [1 ,2 ]
Currin, Andrew [1 ,2 ]
Sung, Rehana [1 ,2 ]
Toogood, Helen [1 ,2 ]
Taylor, Sandra [1 ,2 ]
Faulon, Jean-Loup [1 ,2 ,3 ]
Breitling, Rainer [1 ,2 ]
Takano, Eriko [1 ,2 ]
Scrutton, Nigel S. [1 ,2 ]
机构
[1] Univ Manchester, Manchester Inst Biotechnol, Manchester Synthet Biol Res Ctr Fine & Special Ch, Manchester M1 7DN, Lancs, England
[2] Univ Manchester, Sch Chem, Manchester M1 7DN, Lancs, England
[3] INRA AgroParisTech, MICALIS, F-78352 Jouy En Josas, France
[4] Strathclyde Univ, Strathclyde Inst Pharm & Biomed Sci, 161 Cathedral St, Glasgow G4 0RE, Lanark, Scotland
基金
英国工程与自然科学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
ribosome binding site; pathway engineering; machine learning; terpenoids; translational tuning; synthetic biology; HETEROLOGOUS MEVALONATE PATHWAY; RIBOSOME BINDING-SITES; SACCHAROMYCES-CEREVISIAE; COMBINATORIAL DESIGN; MASS-SPECTROMETRY; LEVEL; ACID; CONSTRUCTION; EXPRESSION; PRECURSOR;
D O I
10.1021/acssynbio.8b00398
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The field of synthetic biology aims to make the design of biological systems predictable, shrinking the huge design space to practical numbers for testing. When designing microbial cell factories, most optimization efforts have focused on enzyme and strain selection/engineering, pathway regulation, and process development. In silico tools for the predictive design of bacterial ribosome binding sites (RBSs) and RBS libraries now allow translational tuning of biochemical pathways; however, methods for predicting optimal RBS combinations in multigene pathways are desirable. Here we present the implementation of machine learning algorithms to model the RBS sequence-phenotype relationship from representative subsets of large combinatorial RBS libraries allowing the accurate prediction of optimal high-producers. Applied to a recombinant monoterpenoid production pathway in Escherichia coli, our approach was able to boost production titers by over 60% when screening under 3% of a library. To facilitate library screening, a multiwell plate fermentation procedure was developed, allowing increased screening throughput with sufficient resolution to discriminate between high and low producers. High producers from one library did not translate during scale-up, but the reduced screening requirements allowed rapid rescreening at the larger scale. This methodology is potentially compatible with any biochemical pathway and provides a powerful tool toward predictive design of bacterial production chassis.
引用
收藏
页码:127 / 136
页数:19
相关论文
共 46 条
[1]   Assessing the Effects of Data Selection and Representation on the Development of Reliable E. coli Sigma 70 Promoter Region Predictors [J].
Abbas, Mostafa M. ;
Mohie-Eldin, Mostafa M. ;
El-Manzalawy, Yasser .
PLOS ONE, 2015, 10 (03)
[2]   Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli [J].
Ajikumar, Parayil Kumaran ;
Xiao, Wen-Hai ;
Tyo, Keith E. J. ;
Wang, Yong ;
Simeon, Fritz ;
Leonard, Effendi ;
Mucha, Oliver ;
Phon, Too Heng ;
Pfeifer, Blaine ;
Stephanopoulos, Gregory .
SCIENCE, 2010, 330 (6000) :70-74
[3]   Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning [J].
Alipanahi, Babak ;
Delong, Andrew ;
Weirauch, Matthew T. ;
Frey, Brendan J. .
NATURE BIOTECHNOLOGY, 2015, 33 (08) :831-+
[4]   Principal component analysis of proteomics (PCAP) as a tool to direct metabolic engineering [J].
Alonso-Gutierrez, Jorge ;
Kim, Eun-Mi ;
Batth, Tanveer S. ;
Cho, Nathan ;
Hu, Qijun ;
Chan, Leanne Jade G. ;
Petzold, Christopher J. ;
Hinson, Nathan J. ;
Adams, Paul D. ;
Keasling, Jay D. ;
Martin, Hector Garcia ;
Lee, Taek Soon .
METABOLIC ENGINEERING, 2015, 28 :123-133
[5]   Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production [J].
Alonso-Gutierrez, Jorge ;
Chan, Rossana ;
Batth, Tanveer S. ;
Adams, Paul D. ;
Keasling, Jay D. ;
Petzold, Christopher J. ;
Lee, Taek Soon .
METABOLIC ENGINEERING, 2013, 19 :33-41
[6]   Expanding the Landscape of Diterpene Structural Diversity through Stereochemically Controlled Combinatorial Biosynthesis [J].
Andersen-Ranberg, Johan ;
Kongstad, Kenneth Thermann ;
Nielsen, Morten Thrane ;
Jensen, Niels Bjerg ;
Pateraki, Irini ;
Bach, Soren Spanner ;
Hamberger, Britta ;
Zerbe, Philipp ;
Staerk, Dan ;
Bohlmann, Jorg ;
Moller, Birger Lindberg ;
Hamberger, Bjorn .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (06) :2142-2146
[7]   Deep learning for computational biology [J].
Angermueller, Christof ;
Parnamaa, Tanel ;
Parts, Leopold ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (07)
[8]   Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites [J].
Borujeni, Amin Espah ;
Channarasappa, Anirudh S. ;
Salis, Howard M. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (04) :2646-2659
[9]   Next-Generation Machine Learning for Biological Networks [J].
Camacho, Diogo M. ;
Collins, Katherine M. ;
Powers, Rani K. ;
Costello, James C. ;
Collins, James J. .
CELL, 2018, 173 (07) :1581-1592
[10]   Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism [J].
Cao, Weijia ;
Ma, Weichao ;
Wang, Xin ;
Zhang, Bowen ;
Cao, Xun ;
Chen, Kequan ;
Li, Yan ;
Ouyang, Pingkai .
SCIENTIFIC REPORTS, 2016, 6