A simpler proof for the dimension of the graph of the classical Weierstrass function

被引:10
|
作者
Keller, Gerhard [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2017年 / 53卷 / 01期
关键词
Weierstrass function; Hausdorff dimension; BERNOULLI CONVOLUTIONS; ABSOLUTE CONTINUITY;
D O I
10.1214/15-AIHP711
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let W-lambda,W-b(x) = Sigma(infinity)(n=0) lambda(n) g (b(n) x) where b >= 2 is an integer and g (u) = cos(2 pi u) (classical Weierstrass function). Building on work by Ledrappier (In Symbolic Dynamics and Its Applications (1992) 285-293), Baraliski, Barany and Romanowska (Adv. Math. 265 (2014) 32-59) and Tsujii (Nonlinearity 14 (2001) 1011-1027), we provide an elementary proof that the Hausdorff dimension of W-lambda,W-b equals 2+ log lambda/log b, for all lambda is an element of (lambda(b), 1) with a suitable lambda(b) < 1. This reproduces results by Baraiiski, Barany and Romanowska (Adv. Math. 265 (2014) 32-59) without using the dimension theory for hyperbolic measures of Ledrappier and Young (Ann. of Math. (2) 122 (1985) 540-574; Comm. Math. Phys. 117 (1988) 529-548), which is replaced by a simple telescoping argument together with a recursive multi-scale estimate.
引用
收藏
页码:169 / 181
页数:13
相关论文
共 50 条
  • [21] Dimension Theory of Iterated Function Systems
    Feng, De-Jun
    Hu, Huyi
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (11) : 1435 - 1500
  • [22] A short proof of the dimension formula for Levy processes
    Yang, Ming
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2006, 11 : 217 - 219
  • [24] Control of Weierstrass-Mandelbrot Function Model with Morlet Wavelets
    Zhang, Li
    Liu, Shutang
    Yu, Chenglong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (10):
  • [25] Generating Signals with Multiscale Time Irreversibility: The Asymmetric Weierstrass Function
    Burykin, Anton
    Costa, Madalena D.
    Peng, Chung-Kang
    Goldberger, Ary L.
    Buchman, Timothy G.
    COMPLEXITY, 2011, 16 (04) : 29 - 38
  • [26] ON THE ASSOUAD DIMENSION OF GRAPH DIRECTED MORAN FRACTALS
    Olsen, L.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2011, 19 (02) : 221 - 226
  • [27] Hausdorff dimension of the graph of the Fractional Brownian Sheet
    Ayache, A
    REVISTA MATEMATICA IBEROAMERICANA, 2004, 20 (02) : 395 - 412
  • [28] Graph fractal dimension and the structure of fractal networks
    Skums, Pavel
    Bunimovich, Leonid
    JOURNAL OF COMPLEX NETWORKS, 2020, 8 (04)
  • [29] Dynamical Variation of Weierstrass-Mandelbrot Function in Higher Dimensional Space
    Li Zhang
    Shu Tang Liu
    MECHANICAL ENGINEERING, MATERIALS SCIENCE AND CIVIL ENGINEERING II, 2014, 470 : 767 - +
  • [30] Nonlinear differential equations with exact solutions expressed via the Weierstrass function
    Kudryashov, NA
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2004, 59 (7-8): : 443 - 454