A simpler proof for the dimension of the graph of the classical Weierstrass function

被引:12
作者
Keller, Gerhard [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, Germany
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2017年 / 53卷 / 01期
关键词
Weierstrass function; Hausdorff dimension; BERNOULLI CONVOLUTIONS; ABSOLUTE CONTINUITY;
D O I
10.1214/15-AIHP711
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let W-lambda,W-b(x) = Sigma(infinity)(n=0) lambda(n) g (b(n) x) where b >= 2 is an integer and g (u) = cos(2 pi u) (classical Weierstrass function). Building on work by Ledrappier (In Symbolic Dynamics and Its Applications (1992) 285-293), Baraliski, Barany and Romanowska (Adv. Math. 265 (2014) 32-59) and Tsujii (Nonlinearity 14 (2001) 1011-1027), we provide an elementary proof that the Hausdorff dimension of W-lambda,W-b equals 2+ log lambda/log b, for all lambda is an element of (lambda(b), 1) with a suitable lambda(b) < 1. This reproduces results by Baraiiski, Barany and Romanowska (Adv. Math. 265 (2014) 32-59) without using the dimension theory for hyperbolic measures of Ledrappier and Young (Ann. of Math. (2) 122 (1985) 540-574; Comm. Math. Phys. 117 (1988) 529-548), which is replaced by a simple telescoping argument together with a recursive multi-scale estimate.
引用
收藏
页码:169 / 181
页数:13
相关论文
共 16 条
[1]  
[Anonymous], 1977, Fractals, Form, Chance, and Dimension
[2]   On the dimension of the graph of the classical Weierstrass function [J].
Baranski, Krzysztof ;
Barany, Balazs ;
Romanowska, Julia .
ADVANCES IN MATHEMATICS, 2014, 265 :32-59
[3]  
Biacino L, 2011, STUD U BABES-BOL MAT, V56, P7
[4]  
Fu S., 2011, FAR E J DYN SYST, V17, P85
[5]   The Hausdorff dimension of graphs of Weierstrass functions [J].
Hunt, BR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (03) :791-800
[6]  
Kaplan J.L., 1984, Ergod. Theory Dyn. Syst., V4, P261, DOI [10.1017/S0143385700002431, DOI 10.1017/S0143385700002431]
[7]   Stability index for chaotically driven concave maps [J].
Keller, Gerhard .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 89 :603-622
[8]   THE METRIC ENTROPY OF DIFFEOMORPHISMS .2. RELATIONS BETWEEN ENTROPY, EXPONENTS AND DIMENSION [J].
LEDRAPPIER, F ;
YOUNG, LS .
ANNALS OF MATHEMATICS, 1985, 122 (03) :540-574
[9]   DIMENSION FORMULA FOR RANDOM TRANSFORMATIONS [J].
LEDRAPPIER, F ;
YOUNG, LS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 117 (04) :529-548
[10]  
Ledrappier F., 1992, Contemp. Math., V135, P285