Numerical simulation of back discharge ignition

被引:7
|
作者
Jansky, Jaroslav [1 ]
Gaychet, Sylvain [1 ,2 ]
Bessieres, Delphine [2 ]
Soulem, Nicolas [2 ]
Paillol, Jean [2 ]
Lemont, Florent [1 ]
机构
[1] Commissariat Energie Atom & Energies Alternat, Ctr Marcoule, F-30207 Bagnols Sur Ceze, France
[2] Univ Pau & Pays Adour, Lab SIAME, F-64013 Pau, France
关键词
back discharge; atmospheric-pressure plasma; numerical simulation; CORONA DISCHARGE; NEGATIVE CORONA; TRICHEL PULSES; PLASMA; MODEL;
D O I
10.1088/0022-3727/47/6/065202
中图分类号
O59 [应用物理学];
学科分类号
摘要
Back discharge refers to any discharges initiated at or near a dielectric layer covering a passive electrode (Czech et al 2011 Eur. Phys. J. D 65 459-74). Back discharge activity is commonly observed in electrostatic precipitators. This study aims to contribute to increasing the fundamental understanding of back discharge phenomena by using a plasma fluid model. The modelling strategy only considers the region of back discharge development as a first approach, and the numerical simulation is complemented by an experimental study. Back discharge ignition is studied with a pinhole of radius 100 mu m set in a dielectric layer. First, we have considered the criterion for back discharge ignition from an electrostatic point of view, and the numerical results confirm the major role of the surface charge density deposited on the dielectric layer. Then the dynamics of back discharge in the 'onset-streamer' regime (Masuda and Mizuno 1977/1978 J. Electrostat. 2 375-96) is described: the discharge ignites inside the pinhole, develops outside as a cathode-directed ionizing wave, before stopping. This regime is characterized by a current pulse and the corresponding optical emission. Results obtained in experiments and simulations are in good agreement. Furthermore, this discharge regime is independent of the pinhole radius (ranging from 75 to 150 mu m) despite a change in the discharge shape. Finally, an increase in the initial negative ion density or Laplacian electric field is found to be responsible for the transition from 'onset-streamer' to 'space streamer' regime, which corresponds well with experimental observations.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Numerical simulation of multipactor discharge on a dielectric surface
    Vdovicheva, Nadezhda K.
    Sazontov, Alexandr G.
    2012 PROCEEDINGS OF THE INTERNATIONAL CONFERENCE DAYS ON DIFFRACTION (DD), 2012, : 240 - 244
  • [42] Numerical simulation of an electric discharge in supersonic flow
    Bityurin, V. A.
    Bocharov, A. N.
    Popov, N. A.
    FLUID DYNAMICS, 2008, 43 (04) : 642 - 653
  • [43] Numerical Simulation of Surface Dielectric Barrier Discharge
    Wang Lina
    Wang Zhuoyuan
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 310 - 313
  • [44] Simulation of helium discharge ignition and dynamics in thin tubes at atmospheric pressure
    Jansky, Jaroslav
    Bourdon, Anne
    APPLIED PHYSICS LETTERS, 2011, 99 (16)
  • [45] Numerical simulation of gas discharge protectors - A review
    Larsson, A
    Scuka, V
    Borgeest, K
    ter Haseborg, JL
    IEEE TRANSACTIONS ON POWER DELIVERY, 1999, 14 (02) : 405 - 410
  • [46] Numerical simulation of positive corona discharge in air
    Settaouti, A.
    Settaouti, L.
    INTERNATIONAL JOURNAL OF ENGINEERING SYSTEMS MODELLING AND SIMULATION, 2011, 3 (3-4) : 148 - 154
  • [47] NUMERICAL SIMULATION OF THE STRUCTURE OF A SPHERICAL GLOW DISCHARGE
    Lelyukh, Yu. I.
    UKRAINIAN JOURNAL OF PHYSICS, 2010, 55 (11): : 1165 - 1171
  • [48] Numerical simulation of a pulsed corona discharge plasma
    Koh, WH
    Park, IH
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2003, 42 : S920 - S924
  • [49] Numerical simulation of a surface barrier discharge in air
    Solov'ev, V. R.
    Konchakov, A. M.
    Krivtsov, V. M.
    Aleksandrov, N. L.
    PLASMA PHYSICS REPORTS, 2008, 34 (07) : 594 - 608
  • [50] Numerical simulation of an electric discharge in supersonic flow
    V. A. Bityurin
    A. N. Bocharov
    N. A. Popov
    Fluid Dynamics, 2008, 43 : 642 - 653