The Chow ring of the moduli space of curves of genus six

被引:15
作者
Penev, Nikola [1 ]
Vakil, Ravi [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
来源
ALGEBRAIC GEOMETRY | 2015年 / 2卷 / 01期
基金
美国国家科学基金会;
关键词
Brill-Noether theory; Chow ring; Curves; Intersection theory; Moduli; Mukai;
D O I
10.14231/AG-2015-006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We determine the Chow ring (with Q-coefficients) of M-6 by showing that all Chow classes are tautological. In particular, all algebraic cohomology is tautological, and the natural map from Chow to cohomology is injective. To demonstrate the utility of these methods, we also give quick derivations of the Chow groups of moduli spaces of curves of lower genus. The genus six case relies on the particularly beautiful Brill-Noether theory in this case, and in particular on a rank five vector bundle "relativizing" a baby case of a celebrated construction of Mukai, which we interpret as a subbundle of the rank six vector bundle of quadrics cutting out the canonical curve.
引用
收藏
页码:123 / 136
页数:14
相关论文
共 50 条
[41]   A MODULI STACK OF TROPICAL CURVES [J].
Cavalieri, Renzo ;
Chan, Melody ;
Ulirsch, Martin ;
Wise, Jonathan .
FORUM OF MATHEMATICS SIGMA, 2020, 8
[42]   Moduli of curves on Enriques surfaces [J].
Ciliberto, Ciro ;
Dedieu, Thomas ;
Galati, Concettina ;
Knutsen, Andreas Leopold .
ADVANCES IN MATHEMATICS, 2020, 365
[43]   Parametrizing the moduli space of curves and applications to smooth plane quartics over finite fields [J].
Lercier, Reynald ;
Ritzenthaler, Christophe ;
Rovetta, Florent ;
Sijsling, Jeroen .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2014, 17 :128-147
[44]   On the tautological ring of Humbert curves [J].
Laterveer, Robert .
MANUSCRIPTA MATHEMATICA, 2023, 172 (3-4) :1093-1107
[45]   Equivairant intersection theory: (With an appendix by Angelo Vistoli: The Chow ring of ℳ2) [J].
Edidin D. ;
Graham W. .
Inventiones mathematicae, 1998, 131 (3) :595-634
[46]   Chow rings of vector space matroids [J].
Hameister, Thomas ;
Rao, Sujit ;
Simpson, Connor .
JOURNAL OF COMBINATORICS, 2021, 12 (01) :55-83
[47]   ON THE CHOW RING OF THE CLASSIFYING STACK OF ALGEBRAIC TORI [J].
Sala, Francesco .
DOCUMENTA MATHEMATICA, 2022, 27 :917-932
[48]   The Chow Ring of a Fulton-MacPherson Compactification [J].
Petersen, Dan .
MICHIGAN MATHEMATICAL JOURNAL, 2017, 66 (01) :195-202
[49]   Stable Vector Bundles as Generators of the Chow Ring [J].
Ernesto C. Mistretta .
Geometriae Dedicata, 2006, 117 :203-213
[50]   Stable vector bundles as generators of the Chow ring [J].
Mistretta, EC .
GEOMETRIAE DEDICATA, 2006, 117 (01) :203-213