Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression

被引:161
作者
Kim, Jong Kyoung [1 ]
Kolodziejczyk, Aleksandra A. [1 ,2 ]
Illicic, Tomislav [1 ,2 ]
Teichmann, Sarah A. [1 ,2 ]
Marioni, John C. [1 ,2 ]
机构
[1] EBI, EMBL, Cambridge CB10 1SD, England
[2] Wellcome Trust Sanger Inst, Cambridge CB10 1SA, England
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
关键词
EMBRYONIC STEM-CELLS; MONOALLELIC GENE-EXPRESSION; TRANSCRIPTOMICS;
D O I
10.1038/ncomms9687
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell RNA-sequencing (scRNA-seq) facilitates identification of new cell types and gene regulatory networks as well as dissection of the kinetics of gene expression and patterns of allele-specific expression. However, to facilitate such analyses, separating biological variability from the high level of technical noise that affects scRNA-seq protocols is vital. Here we describe and validate a generative statistical model that accurately quantifies technical noise with the help of external RNA spike-ins. Applying our approach to investigate stochastic allele-specific expression in individual cells, we demonstrate that a large fraction of stochastic allele-specific expression can be explained by technical noise, especially for lowly and moderately expressed genes: we predict that only 17.8% of stochastic allele-specific expression patterns are attributable to biological noise with the remainder due to technical noise.
引用
收藏
页数:8
相关论文
共 28 条
  • [21] Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells
    Shalek, Alex K.
    Satija, Rahul
    Adiconis, Xian
    Gertner, Rona S.
    Gaublomme, Jellert T.
    Raychowdhury, Raktima
    Schwartz, Schraga
    Yosef, Nir
    Malboeuf, Christine
    Lu, Diana
    Trombetta, John J.
    Gennert, Dave
    Gnirke, Andreas
    Goren, Alon
    Hacohen, Nir
    Levin, Joshua Z.
    Park, Hongkun
    Regev, Aviv
    [J]. NATURE, 2013, 498 (7453) : 236 - 240
  • [22] Sources of bias in measures of allele-specific expression derived from RNA-seq data aligned to a single reference genome
    Stevenson, Kraig R.
    Coolon, Joseph D.
    Wittkopp, Patricia J.
    [J]. BMC GENOMICS, 2013, 14
  • [23] Tracing the Derivation of Embryonic Stem Cells from the Inner Cell Mass by Single-Cell RNA-Seq Analysis
    Tang, Fuchou
    Barbacioru, Catalin
    Bao, Siqin
    Lee, Caroline
    Nordman, Ellen
    Wang, Xiaohui
    Lao, Kaiqin
    Surani, M. Azim
    [J]. CELL STEM CELL, 2010, 6 (05) : 468 - 478
  • [24] Tang FC, 2009, NAT METHODS, V6, P377, DOI [10.1038/NMETH.1315, 10.1038/nmeth.1315]
  • [25] Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq
    Treutlein, Barbara
    Brownfield, Doug G.
    Wu, Angela R.
    Neff, Norma F.
    Mantalas, Gary L.
    Espinoza, F. Hernan
    Desai, Tushar J.
    Krasnow, Mark A.
    Quake, Stephen R.
    [J]. NATURE, 2014, 509 (7500) : 371 - +
  • [26] Quantitative assessment of single-cell RNRNA-sequencing methods
    Wu, Angela R.
    Neff, Norma F.
    Kalisky, Tomer
    Dalerba, Piero
    Treutlein, Barbara
    Rothenberg, Michael E.
    Mburu, Francis M.
    Mantalas, Gary L.
    Sim, Sopheak
    Clarke, Michael F.
    Quake, Stephen R.
    [J]. NATURE METHODS, 2014, 11 (01) : 41 - +
  • [27] Fast and SNP-tolerant detection of complex variants and splicing in short reads
    Wu, Thomas D.
    Nacu, Serban
    [J]. BIOINFORMATICS, 2010, 26 (07) : 873 - 881
  • [28] Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells
    Yan, Liying
    Yang, Mingyu
    Guo, Hongshan
    Yang, Lu
    Wu, Jun
    Li, Rong
    Liu, Ping
    Lian, Ying
    Zheng, Xiaoying
    Yan, Jie
    Huang, Jin
    Li, Ming
    Wu, Xinglong
    Wen, Lu
    Lao, Kaiqin
    Li, Ruiqiang
    Qiao, Jie
    Tang, Fuchou
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (09) : 1131 - +