Characterizing noise structure in single-cell RNA-seq distinguishes genuine from technical stochastic allelic expression

被引:161
作者
Kim, Jong Kyoung [1 ]
Kolodziejczyk, Aleksandra A. [1 ,2 ]
Illicic, Tomislav [1 ,2 ]
Teichmann, Sarah A. [1 ,2 ]
Marioni, John C. [1 ,2 ]
机构
[1] EBI, EMBL, Cambridge CB10 1SD, England
[2] Wellcome Trust Sanger Inst, Cambridge CB10 1SA, England
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
关键词
EMBRYONIC STEM-CELLS; MONOALLELIC GENE-EXPRESSION; TRANSCRIPTOMICS;
D O I
10.1038/ncomms9687
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell RNA-sequencing (scRNA-seq) facilitates identification of new cell types and gene regulatory networks as well as dissection of the kinetics of gene expression and patterns of allele-specific expression. However, to facilitate such analyses, separating biological variability from the high level of technical noise that affects scRNA-seq protocols is vital. Here we describe and validate a generative statistical model that accurately quantifies technical noise with the help of external RNA spike-ins. Applying our approach to investigate stochastic allele-specific expression in individual cells, we demonstrate that a large fraction of stochastic allele-specific expression can be explained by technical noise, especially for lowly and moderately expressed genes: we predict that only 17.8% of stochastic allele-specific expression patterns are attributable to biological noise with the remainder due to technical noise.
引用
收藏
页数:8
相关论文
共 28 条
  • [1] HTSeq-a Python']Python framework to work with high-throughput sequencing data
    Anders, Simon
    Pyl, Paul Theodor
    Huber, Wolfgang
    [J]. BIOINFORMATICS, 2015, 31 (02) : 166 - 169
  • [2] Biased Allelic Expression in Human Primary Fibroblast Single Cells
    Borel, Christelle
    Ferreira, Pedro G.
    Santoni, Federico
    Delaneau, Olivier
    Fort, Alexandre
    Popadin, Konstantin Y.
    Garieri, Marco
    Falconnet, Emilie
    Ribaux, Pascale
    Guipponi, Michel
    Padioleau, Ismael
    Carninci, Piero
    Dermitzakis, Emmanouil T.
    Antonarakis, Stylianos E.
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2015, 96 (01) : 70 - 80
  • [3] Identifying sources of variation and the flow of information in biochemical networks
    Bowsher, Clive G.
    Swain, Peter S.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (20) : E1320 - E1328
  • [4] Brennecke P, 2013, NAT METHODS, V10, P1093, DOI [10.1038/NMETH.2645, 10.1038/nmeth.2645]
  • [5] Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells
    Deng, Qiaolin
    Ramskold, Daniel
    Reinius, Bjorn
    Sandberg, Rickard
    [J]. SCIENCE, 2014, 343 (6167) : 193 - 196
  • [6] Random Monoallelic Gene Expression Increases upon Embryonic Stem Cell Differentiation
    Eckersley-Maslin, Melanie A.
    Thybert, David
    Bergmann, Jan H.
    Marioni, John C.
    Flicek, Paul
    Spector, David L.
    [J]. DEVELOPMENTAL CELL, 2014, 28 (04) : 351 - 365
  • [7] Developmental and adult phenotyping directly from mutant embryonic stem cells
    George, Sophia H. L.
    Gertsenstein, Marina
    Vintersten, Kristina
    Korets-Smith, Ella
    Murphy, John
    Stevens, Mary E.
    Haigh, Jody J.
    Nagy, Andras
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (11) : 4455 - 4460
  • [8] Grün D, 2014, NAT METHODS, V11, P637, DOI [10.1038/NMETH.2930, 10.1038/nmeth.2930]
  • [9] Islam S, 2014, NAT METHODS, V11, P163, DOI [10.1038/NMETH.2772, 10.1038/nmeth.2772]
  • [10] Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types
    Jaitin, Diego Adhemar
    Kenigsberg, Ephraim
    Keren-Shaul, Hadas
    Elefant, Naama
    Paul, Franziska
    Zaretsky, Irina
    Mildner, Alexander
    Cohen, Nadav
    Jung, Steffen
    Tanay, Amos
    Amit, Ido
    [J]. SCIENCE, 2014, 343 (6172) : 776 - 779