Dissipation in the effective field theory for hydrodynamics: First-order effects

被引:65
|
作者
Endlich, Solomon [1 ,2 ]
Nicolis, Alberto [1 ,2 ]
Porto, Rafael A. [1 ,2 ,3 ]
Wang, Junpu [1 ,2 ]
机构
[1] Columbia Univ, Dept Phys, New York, NY 10027 USA
[2] Columbia Univ, Inst Strings Cosmol & Astroparticle Phys, New York, NY 10027 USA
[3] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
来源
PHYSICAL REVIEW D | 2013年 / 88卷 / 10期
关键词
VISCOSITY;
D O I
10.1103/PhysRevD.88.105001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce dissipative effects in the effective field theory of hydrodynamics. We do this in a model-independent fashion by coupling the long-distance degrees of freedom explicitly kept in the effective field theory to a generic sector that "lives in the fluid," which corresponds physically to the microscopic constituents of the fluid. At linear order in perturbations, the symmetries, the derivative expansion, and the assumption that this microscopic sector is thermalized allow us to characterize the leading dissipative effects at low frequencies via three parameters only, which correspond to bulk viscosity, shear viscosity, and-in the presence of a conserved charge-heat conduction. Using our methods we rederive the Kubo relations for these transport coefficients.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A behavioural theory of first-order CML
    Ferreira, W
    Hennessy, M
    THEORETICAL COMPUTER SCIENCE, 1999, 216 (1-2) : 55 - 107
  • [32] A theory of first-order counterfactual reasoning
    Thielscher, M
    KI-99: ADVANCES IN ARTIFICIAL INTELLIGENCE, 1999, 1701 : 137 - 148
  • [33] A first-order theory of Ulm type
    Harrison-Trainor, Matthew
    COMPUTABILITY-THE JOURNAL OF THE ASSOCIATION CIE, 2019, 8 (3-4): : 347 - 358
  • [34] Knowledge and communication: A first-order theory
    Davis, E
    ARTIFICIAL INTELLIGENCE, 2005, 166 (1-2) : 81 - 139
  • [35] The first-order theory of subtyping constraints
    Su, ZD
    Aiken, A
    Niehren, J
    Priesnitz, T
    Treinen, R
    ACM SIGPLAN NOTICES, 2002, 37 (01) : 203 - 216
  • [36] A Mechanizable First-Order Theory of Ordinals
    Schmitt, Peter H.
    AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, TABLEAUX 2017, 2017, 10501 : 331 - 346
  • [37] A finite first-order theory of classes
    Kirchner, Florent
    TYPES FOR PROOFS AND PROGRAMS, 2007, 4502 : 188 - 202
  • [38] FIRST-ORDER THEORY OF PERMUTATION GROUPS
    SHELAH, S
    ISRAEL JOURNAL OF MATHEMATICS, 1973, 14 (02) : 149 - 162
  • [40] A Weak First-Order Theory of Sequences
    Kristiansen, Lars
    Murwanashyaka, Juvenal
    TWENTY YEARS OF THEORETICAL AND PRACTICAL SYNERGIES, CIE 2024, 2024, 14773 : 390 - 404