The sets of divergence points of self-similar measures are residual

被引:19
作者
Li, Jinjun [1 ]
Wu, Min [2 ]
机构
[1] Zhangzhou Normal Univ, Dept Math, Zhangzhou 363000, Peoples R China
[2] S China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-similar measure; Open set condition; Divergence point; Residual; SPECIFICATION PROPERTY; TOPOLOGICAL PRESSURE; NONNORMAL POINTS; BAIRE CATEGORY; DIMENSION; AVERAGES; ENTROPY; NUMBERS;
D O I
10.1016/j.jmaa.2013.03.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let mu be a self-similar measure supported on a self-similar set K with the open set condition. For x is an element of K, let A(D(x)) be the set of accumulation points of D-r(x) = log mu(B(x.r))/logr as r SE arrow 0. In this paper, we show that for any closed non-singleton subinterval I subset of R, the set of points x for which the set A(D(x)) equals I is either empty or residual. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:429 / 437
页数:9
相关论文
共 23 条
[1]   Topological and fractal properties of real numbers which are not normal [J].
Albeverio, S ;
Pratsiovytyi, M ;
Torbin, G .
BULLETIN DES SCIENCES MATHEMATIQUES, 2005, 129 (08) :615-630
[2]   BAIRE CATEGORY AND EXTREMELY NON-NORMAL POINTS OF INVARIANT SETS OF IFS'S [J].
Baek, In-Soo ;
Olsen, Lars .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (03) :935-943
[3]   Sets of "non-typical" points have full topological entropy and full Hausdorff dimension [J].
Barreira, L ;
Schmeling, J .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 116 (1) :29-70
[4]  
Barreira L., PREPRINT
[5]   The pointwise dimension of self-similar measures [J].
Chen, EC ;
Xiong, JC .
CHINESE SCIENCE BULLETIN, 1999, 44 (23) :2136-2140
[6]  
Falconer K., 1997, Techniques in Fractal Geometry
[7]   Recurrence, dimension and entropy [J].
Fan, AH ;
Feng, DJ ;
Wu, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 64 :229-244
[8]   Multifractal formalism for self-similar measures with weak separation condition [J].
Feng, De-Jun ;
Lau, Ka-Sing .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 92 (04) :407-428
[9]   Ergodic limits on the conformal repellers [J].
Feng, DJ ;
Lau, KS ;
Wu, J .
ADVANCES IN MATHEMATICS, 2002, 169 (01) :58-91
[10]   ON BANDTS TANGENTIAL DISTRIBUTION FOR SELF-SIMILAR MEASURES [J].
GRAF, S .
MONATSHEFTE FUR MATHEMATIK, 1995, 120 (3-4) :223-246