Bone-Selective MRI as a Nonradiative Alternative to CT for Craniofacial Imaging

被引:9
|
作者
Zhang, Rosaline [1 ]
Lee, Hyunyeol [2 ]
Zhao, Xia [2 ]
Song, Hee Kwon [2 ]
Vossough, Arastoo [3 ]
Wehrli, Felix W. [2 ]
Bartlett, Scott P. [1 ]
机构
[1] Univ Penn, Childrens Hosp Philadelphia, Div Plast Surg, Buerger Ctr, 3500 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Univ Penn, Childrens Hosp Philadelphia, Dept Radiol, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
MRI; CT; Craniofacial; COMPUTED-TOMOGRAPHY; RADIATION-EXPOSURE; MAGNETIC-RESONANCE; IONIZING-RADIATION; CANCER-RISKS; IN-VIVO; SCANS; RECONSTRUCTION; WATER;
D O I
10.1016/j.acra.2020.03.001
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rational and Objectives: Computed tomography (CT) is the clinical gold-standard for high-resolution 3D visualization of cortical bone structures. However, ionizing radiation is of concern, particularly for pediatric patients. This study evaluates the feasibility of producing 3D human skull renderings using a novel bone-selective magnetic resonance imaging technique. Materials and Methods: A dual-radiofrequency pulse, dual-echo, 3D ultrashort echo time sequence was applied for scanning of a cadaver skull and five healthy adult subjects. Scans were each completed within 6 minutes. Semiautomatic segmentation of bone voxels was performed using ITK-SNAP software, leading to 3D renderings of the skulls. For comparison, thin-slice head CT scans were performed. Mimics software was used to measure eight anatomic distances from 3D renderings. Lin's Concordance Correlation test was applied to assess agreement between measurements from MR-based and CT-based 3D skull renderings. Results: The 3D rendered MR images depict most craniofacial features (e.g., zygomatic arch), although some voxels were erroneously included or excluded in the renderings. MR-based measurements differed from CT-based measurements by mean percent difference ranging from 2.3%-5.0%. Lin's Concordance Correlation Coefficients for MR-based vs CT-based measurements ranged from 0.998-1.000. Conclusion: The proposed dual-radiofrequency dual-echo 3D ultrashort echo time imaging technique produces high-resolution bonespecific images within a clinically feasible imaging time, leading to clear visualization of craniofacial skeletal structures. Concordance coefficients suggest good reliability of the method compared to CT. The method is currently limited by time and manual input necessary for segmentation correction. Further investigation is needed for more accurate 3D renderings and for scanning of pediatric patients.
引用
收藏
页码:1515 / 1522
页数:8
相关论文
共 50 条
  • [41] HMPAO SCINTIGRAPHY, MRI, AND CT OF A VASCULAR FIBROUS DYSPLASIA OF THE CRANIOFACIAL BONES
    CONRAD, GR
    DEAN, BL
    BAUMANN, RJ
    SEABOLD, JE
    CLINICAL NUCLEAR MEDICINE, 1991, 16 (10) : 743 - 746
  • [42] Imaging in craniofacial disorders with special emphasis on gradient echo Black-Bone and Zero Time Echo MRI sequences
    Ganau, Mario
    Syrmos, Nikolaos C.
    Magdum, Shailendra A.
    JOURNAL OF PEDIATRIC NEUROSCIENCES, 2022, 17 : 14 - 20
  • [43] Craniofacial Manifestations of Systemic Disorders: CT and MR Imaging Findings and Imaging Approach
    Andreu-Arasa, V. Carlota
    Chapman, Margaret N.
    Kuno, Hirofumi
    Fujita, Akifumi
    Sakai, Osamu
    RADIOGRAPHICS, 2018, 38 (03) : 890 - 911
  • [44] CT and MR imaging of giant cell granuloma of the craniofacial bones
    Nackos, J. S.
    Wiggins, R. H., III
    Harnsberger, H. R.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2006, 27 (08) : 1651 - 1653
  • [45] CT and MR imaging findings of a rare craniofacial malformation: Diprosopus
    Koseoglu, K
    Gok, C
    Dayanir, Y
    Karaman, C
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2003, 180 (03) : 863 - 864
  • [46] CT and MR imaging of the orientation of the vestibule in the study of craniofacial asymmetries
    Besson, AF
    Leger, J
    Delachapelle, C
    Doual, A
    Besson, PE
    RADIOLOGY, 1996, 201 : 629 - 629
  • [47] ADRENOLEUKODYSTROPHY - IMAGING WITH CT, MRI, AND PET
    VOLKOW, ND
    PATCHELL, L
    KULKARNI, MV
    REED, K
    SIMMONS, M
    JOURNAL OF NUCLEAR MEDICINE, 1987, 28 (04) : 524 - 527
  • [48] Periodontoid pseudotumor: CT and MRI imaging
    Yu, E
    Montanera, W
    NEURORADIOLOGY, 2005, 47 (05) : 328 - 333
  • [49] Imaging of abdominal tumours: CT or MRI?
    Olsen, Oystein E.
    PEDIATRIC RADIOLOGY, 2009, 39 : S80 - S80
  • [50] Periodontoid pseudotumor: CT and MRI imaging
    Eugene Yu
    Walter Montanera
    Neuroradiology, 2005, 47 (5) : 328 - 333