Bone-Selective MRI as a Nonradiative Alternative to CT for Craniofacial Imaging

被引:10
|
作者
Zhang, Rosaline [1 ]
Lee, Hyunyeol [2 ]
Zhao, Xia [2 ]
Song, Hee Kwon [2 ]
Vossough, Arastoo [3 ]
Wehrli, Felix W. [2 ]
Bartlett, Scott P. [1 ]
机构
[1] Univ Penn, Childrens Hosp Philadelphia, Div Plast Surg, Buerger Ctr, 3500 Civ Ctr Blvd, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Univ Penn, Childrens Hosp Philadelphia, Dept Radiol, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
MRI; CT; Craniofacial; COMPUTED-TOMOGRAPHY; RADIATION-EXPOSURE; MAGNETIC-RESONANCE; IONIZING-RADIATION; CANCER-RISKS; IN-VIVO; SCANS; RECONSTRUCTION; WATER;
D O I
10.1016/j.acra.2020.03.001
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rational and Objectives: Computed tomography (CT) is the clinical gold-standard for high-resolution 3D visualization of cortical bone structures. However, ionizing radiation is of concern, particularly for pediatric patients. This study evaluates the feasibility of producing 3D human skull renderings using a novel bone-selective magnetic resonance imaging technique. Materials and Methods: A dual-radiofrequency pulse, dual-echo, 3D ultrashort echo time sequence was applied for scanning of a cadaver skull and five healthy adult subjects. Scans were each completed within 6 minutes. Semiautomatic segmentation of bone voxels was performed using ITK-SNAP software, leading to 3D renderings of the skulls. For comparison, thin-slice head CT scans were performed. Mimics software was used to measure eight anatomic distances from 3D renderings. Lin's Concordance Correlation test was applied to assess agreement between measurements from MR-based and CT-based 3D skull renderings. Results: The 3D rendered MR images depict most craniofacial features (e.g., zygomatic arch), although some voxels were erroneously included or excluded in the renderings. MR-based measurements differed from CT-based measurements by mean percent difference ranging from 2.3%-5.0%. Lin's Concordance Correlation Coefficients for MR-based vs CT-based measurements ranged from 0.998-1.000. Conclusion: The proposed dual-radiofrequency dual-echo 3D ultrashort echo time imaging technique produces high-resolution bonespecific images within a clinically feasible imaging time, leading to clear visualization of craniofacial skeletal structures. Concordance coefficients suggest good reliability of the method compared to CT. The method is currently limited by time and manual input necessary for segmentation correction. Further investigation is needed for more accurate 3D renderings and for scanning of pediatric patients.
引用
收藏
页码:1515 / 1522
页数:8
相关论文
共 50 条
  • [31] An alternative method for radioactivity measurement in quantitative bone SPECT/CT imaging
    Ishihara, Masaru
    Kato, Yasuaki
    Onoguchi, Masahisa
    Shibutani, Takayuki
    SCIENCE PROGRESS, 2021, 104 (03)
  • [32] Registration and fusion of CT and MRI of the temporal bone
    Bartling, SH
    Peldschus, K
    Rodt, T
    Kral, F
    Matthies, H
    Kikinis, R
    Becker, H
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2005, 29 (03) : 305 - 310
  • [33] Imaging of Extraosseous Myeloma: CT, PET/CT, and MRI Features
    Hall, Matthew N.
    Jagannathan, Jyothi P.
    Ramaiya, Nikhil H.
    Shinagare, Atul B.
    Van den Abbeele, Annick D.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2010, 195 (05) : 1057 - 1065
  • [34] Imaging Evaluation of Tricuspid Valve: Analysis of Morphology and Function With CT and MRI
    Saremi, Farhood
    Hassani, Cameron
    Millan-Nunez, Victoria
    Sanchez-Quintana, Damian
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2015, 204 (05) : W531 - W542
  • [35] Imaging of Bone in the Head and Neck Region, is There More Than CT?
    Eley, Karen A.
    Delso, Gaspar
    CURRENT RADIOLOGY REPORTS, 2022, 10 (06) : 69 - 82
  • [36] Advanced Fusion Imaging and Contrast-Enhanced Imaging (CT/MRI-CEUS) in Oncology
    Schwarze, Vincent
    Rubenthaler, Johannes
    Marschner, Constantin
    Fabritius, Matthias Philipp
    Rueckel, Johannes
    Fink, Nicola
    Puhr-Westerheide, Daniel
    Gresser, Eva
    Froelich, Matthias Frank
    Schnitzer, Moritz Ludwig
    Grosse Hokamp, Nils
    Afat, Saif
    Staehler, Michael
    Geyer, Thomas
    Clevert, Dirk-Andre
    CANCERS, 2020, 12 (10) : 1 - 17
  • [37] Extraneural perineurioma: CT and MRI imaging characteristics
    Stephen M. Broski
    Laurel A. Littrell
    Benjamin M. Howe
    Andrew L. Folpe
    Doris E. Wenger
    Skeletal Radiology, 2020, 49 : 109 - 114
  • [38] Automated Segmentation of the Craniofacial Skeleton With "Black Bone" Magnetic Resonance Imaging
    Eley, Karen A.
    Delso, Gaspar
    JOURNAL OF CRANIOFACIAL SURGERY, 2020, 31 (04) : 1015 - 1017
  • [39] Extraneural perineurioma: CT and MRI imaging characteristics
    Broski, Stephen M.
    Littrell, Laurel A.
    Howe, Benjamin M.
    Folpe, Andrew L.
    Wenger, Doris E.
    SKELETAL RADIOLOGY, 2020, 49 (01) : 109 - 114
  • [40] Imaging of occult hip fractures: CT or MRI?
    Rehman, Haroon
    Clement, Rhys G. E.
    Perks, Fergus
    White, Timothy O.
    INJURY-INTERNATIONAL JOURNAL OF THE CARE OF THE INJURED, 2016, 47 (06): : 1297 - 1301