Gromov Hyperbolicity of Regular Graphs

被引:0
|
作者
Carlos Hernandez-Gomez, J. [1 ]
Rodriguez, Jose M. [2 ]
Sigarreta, Jose M. [1 ]
Torres-Nunez, Yadira [3 ]
Villeta, Maria [4 ]
机构
[1] Univ Autonoma Guerrero, Fac Matemat, Carlos E Adame 5, Acapulco, Guerrero, Mexico
[2] Univ Carlos III Madrid, Dept Matemat, Av Univ 30, Madrid 28911, Spain
[3] Humboldt Int Univ, Dept Matemat, 4000 West Flagler St, Miami, FL 33134 USA
[4] Univ Complutense Madrid, Fac Estudios Estadist, Dept Estadist & Invest Operat 3, Av Puerta Hierro S-N, Madrid 3, Spain
关键词
Regular graphs; Gromov hyperbolicity; Geodesics; Domination numbers; Infinite graphs; SMALL-WORLD; CONSTANT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If X is a geodesic metric space and x(1), x(2), x(3) is an element of X, a geodesic triangle T = {x(1), x(2), x(3)} is the union of the three geodesics [x(1)x(2)], [x(2)x(3)] and [x(3)x(1)] in X. The space X is delta-hyperbolic (in the Gromov sense) if any side of T is contained in a delta-neighborhood of the union of the two other sides, for every geodesic triangle T in X. The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. Regular graphs are a very interesting class of graphs with many applications. The main aim of this paper is to obtain information about the hyperbolicity constant of regular graphs. We obtain several bounds for this parameter; in particular, we prove that delta(G) <= Delta n/(8(Delta - 1))+1 for any Delta-regular graph G with n vertices. Furthermore, we show that for each Delta >= 2 and every possible value t of the hyperbolicity constant, there exists a Delta-regular graph G with delta(G) = t. We also study the regular graphs G with delta(G) <= 1, i.e., the graphs which are like trees (in the Gromov sense). Besides, we prove some inequalities involving the hyperbolicity constant and domination numbers for regular graphs.
引用
收藏
页码:395 / 416
页数:22
相关论文
共 50 条
  • [21] Hyperbolicity in median graphs
    Sigarreta, Jose M.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2013, 123 (04): : 455 - 467
  • [22] Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces
    Touris, Eva
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 380 (02) : 865 - 881
  • [23] Bounds on Gromov hyperbolicity constant
    Hernandez, Veronica
    Pestana, Domingo
    Rodriguez, Jose M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (02) : 321 - 342
  • [24] Characterization of Gromov hyperbolic short graphs
    Manuel Rodriguez, Jose
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (02) : 197 - 212
  • [25] Hyperbolicity and parameters of graphs
    Michel, Junior
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    Villeta, Maria
    ARS COMBINATORIA, 2011, 100 : 43 - 63
  • [26] Hyperbolicity in median graphs
    JOSÉ M SIGARRETA
    Proceedings - Mathematical Sciences, 2013, 123 : 455 - 467
  • [27] Hyperbolicity of Direct Products of Graphs
    Carballosa, Walter
    de la Cruz, Amauris
    Martinez-Perez, Alvaro
    Rodriguez, Jose M.
    SYMMETRY-BASEL, 2018, 10 (07):
  • [28] Gromov hyperbolicity of Denjoy Domains
    Venancio Alvarez
    Ana Portilla
    Jose M. Rodriguez
    Eva Touris
    Geometriae Dedicata, 2006, 121 : 221 - 245
  • [29] Gromov Hyperbolicity of Riemann Surfaces
    José M.RODRíGUEZ
    EVa TOURIS
    Acta Mathematica Sinica(English Series), 2007, 23 (02) : 209 - 228
  • [30] Gromov Hyperbolicity of Riemann Surfaces
    José M. Rodríguez
    Eva Tourís
    Acta Mathematica Sinica, English Series, 2007, 23 : 209 - 228