Alternative solution of the gamma-rigid Bohr Hamiltonian in minimal length formalism

被引:24
作者
Alimohammadi, M. [1 ]
Hassanabadi, H. [1 ]
机构
[1] Shahrood Univ Technol, Dept Phys, Shahrood, Iran
关键词
Bohr-Mottelson Hamiltonian; Minimal length; Infinite square well potential; GENERALIZED UNCERTAINTY PRINCIPLE; CRITICAL-POINT SYMMETRY; TRIAXIAL NUCLEI; DIMENSIONS; SCATTERING;
D O I
10.1016/j.nuclphysa.2016.10.004
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The Bohr-Mottelson Hamiltonian on gamma-rigid regime has been extended to the minimal length formalism for the infinite square well potential and the corresponding wave functions as well as the spectra are obtained. The effect of minimal length on energy spectra is studied via various figures and tables and numerical calculations are included for some nuclei and the results are compared with other results and existing experimental data. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:439 / 449
页数:11
相关论文
共 37 条
[1]   CAN SPACETIME BE PROBED BELOW THE STRING SIZE [J].
AMATI, D ;
CIAFALONI, M ;
VENEZIANO, G .
PHYSICS LETTERS B, 1989, 216 (1-2) :41-47
[2]   SUPERSTRING COLLISIONS AT PLANCKIAN ENERGIES [J].
AMATI, D ;
CIAFALONI, M ;
VENEZIANO, G .
PHYSICS LETTERS B, 1987, 197 (1-2) :81-88
[3]  
[Anonymous], 2005, NUCL DATA SHEETS
[4]  
BOHR A, 1952, MAT FYS MEDD DAN VID, V26, P1
[5]  
BOHR A, 1953, MAT FYS MEDD DAN VID, V27, P2
[6]   X(3):: an exactly separable γ-rigid version of the X(5) critical point symmetry [J].
Bonatsos, D ;
Lenis, D ;
Petrellis, D ;
Terziev, PA ;
Yigitoglu, I .
PHYSICS LETTERS B, 2006, 632 (2-3) :238-242
[7]   Z(5): critical point symmetry for the prolate to oblate nuclear shape phase transition [J].
Bonatsos, D ;
Lenis, D ;
Petrellis, D ;
Terziev, PA .
PHYSICS LETTERS B, 2004, 588 (3-4) :172-179
[8]   Bohr Hamiltonian with a deformation-dependent mass term: physical meaning of the free parameter [J].
Bonatsos, Dennis ;
Minkov, N. ;
Petrellis, D. .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2015, 42 (09)
[9]   Bohr Hamiltonian with a deformation-dependent mass term for the Kratzer potential [J].
Bonatsos, Dennis ;
Georgoudis, P. E. ;
Minkov, N. ;
Petrellis, D. ;
Quesne, C. .
PHYSICAL REVIEW C, 2013, 88 (03)
[10]   Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential [J].
Bonatsos, Dennis ;
Georgoudis, P. E. ;
Lenis, D. ;
Minkov, N. ;
Quesne, C. .
PHYSICAL REVIEW C, 2011, 83 (04)