Electrochemical performance of high-capacity nanostructured Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery by hydrothermal method

被引:62
作者
Wei, Xin [1 ]
Zhang, Shichao [1 ]
Du, Zhijia [1 ]
Yang, Puheng [1 ]
Wang, Jing [1 ]
Ren, Yanbiao [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-ion battery; Li-rich layered material; Cathode; X-RAY-DIFFRACTION; OXYGEN LOSS; OXIDES; XPS; ELECTRODES; LICOO2; CELLS; COO;
D O I
10.1016/j.electacta.2013.05.118
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
High-capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O-2 has been successfully synthesized as a cathode material for Li-ion battery by hydrothermal method. The prepared materials are characterized by XRD, SEM, TEM, EDS, XPS and electrochemical measurements. The XRD result shows that Li[Li0.2Mn0.54Ni0.13Co0.13]O-2 material formed a pure phase. SEM and TEM images present a uniformly distributed nanosize of 20-200 nm. The results of CV, charge-discharge tests indicate that this material possesses high discharge capacity and quite good cycling stability. It delivers 251.9 mAh g(-1) and 107.5 mAh g(-1) for the first cycle and remains 139.4 mAh g(-1) and 82.7 mAh g(-1) after 500 cycles, respectively, corresponding to 1 C and 10 C. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:549 / 554
页数:6
相关论文
共 40 条
[1]   Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3Mn2/3]O2-Li[M]O2 (M=Mn0.5-yNi0.5-yCo2y and Ni1-yCoy) solid solutions [J].
Arinkumar, T. A. ;
Wu, Y. ;
Manthiram, A. .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :3067-3073
[2]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[3]   Synthesis and characterization of high-density non-spherical Li(Ni1/3Co1/3Mn1/3)O2 cathode material for lithium ion batteries by two-step drying method [J].
Chang, Zhaorong ;
Chen, Zhongjun ;
Wu, Feng ;
Tang, Hongwei ;
Zhu, Zhihong ;
Yuan, Xiao Zi ;
Wang, Haijiang .
ELECTROCHIMICA ACTA, 2008, 53 (20) :5927-5933
[4]   Electron transfer mechanisms upon lithium deintercalation from LiCoO2 to CoO2 investigated by XPS [J].
Daheron, L. ;
Dedryvere, R. ;
Martinez, H. ;
Menetrier, M. ;
Denage, C. ;
Delmas, C. ;
Gonbeau, D. .
CHEMISTRY OF MATERIALS, 2008, 20 (02) :583-590
[5]   Surface Properties of LiCoO2 Investigated by XPS Analyses and Theoretical Calculations [J].
Daheron, L. ;
Martinez, H. ;
Dedryvere, R. ;
Baraille, I. ;
Menetrier, M. ;
Denage, C. ;
Delmas, C. ;
Gonbeau, D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (14) :5843-5852
[6]   Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium [J].
Dedryvère, R ;
Laruelle, S ;
Grugeon, S ;
Poizot, P ;
Gonbeau, D ;
Tarascon, JM .
CHEMISTRY OF MATERIALS, 2004, 16 (06) :1056-1061
[7]   Nanostructured Lithium Nickel Manganese Oxides for Lithium-Ion Batteries [J].
Deng, Haixia ;
Belharouak, Ilias ;
Cook, Russel E. ;
Wu, Huiming ;
Sun, Yang-Kook ;
Amine, Khalil .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) :A447-A452
[8]   Systematic XPS studies of metal oxides, hydroxides and peroxides [J].
Dupin, JC ;
Gonbeau, D ;
Vinatier, P ;
Levasseur, A .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (06) :1319-1324
[9]   Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts [J].
Gao, J. ;
Manthiram, A. .
JOURNAL OF POWER SOURCES, 2009, 191 (02) :644-647
[10]   Improved electrochemical performances of nanocrystalline Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries [J].
He, Wei ;
Qian, Jiangfeng ;
Cao, Yuliang ;
Ai, Xinping ;
Yang, Hanxi .
RSC ADVANCES, 2012, 2 (08) :3423-3429