Measurement of the Electronic Thermal Conductance Channels and Heat Capacity of Graphene at Low Temperature

被引:92
作者
Fong, Kin Chung [1 ]
Wollman, Emma E. [1 ]
Ravi, Harish [1 ]
Chen, Wei [2 ]
Clerk, Aashish A. [2 ]
Shaw, M. D. [3 ]
Leduc, H. G. [3 ]
Schwab, K. C. [1 ]
机构
[1] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
[2] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[3] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
基金
美国国家科学基金会;
关键词
SHOT-NOISE; QUANTUM;
D O I
10.1103/PhysRevX.3.041008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ability to transport energy is a fundamental property of the two-dimensional Dirac fermions in graphene. Electronic thermal transport in this system is relatively unexplored and is expected to show unique fundamental properties and to play an important role in future applications of graphene, including optoelectronics, plasmonics, and ultrasensitive bolometry. Here, we present measurements of bipolar thermal conductances due to electron diffusion and electron-phonon coupling and infer the electronic specific heat, with a minimum value of 10k(B) (10(-22) J/K) per square micron. We test the validity of the Wiedemann-Franz law and find that the Lorenz number equals 1.32 x (pi(2)/3)(k(B)/e)(2). The electron-phonon thermal conductance has a temperature power law T-2 at high doping levels, and the coupling parameter is consistent with recent theory, indicating its enhancement by impurity scattering. We demonstrate control of the thermal conductance by electrical gating and by suppressing the diffusion channel using NbTiN superconducting electrodes, which sets the stage for future graphene-based single-microwave photon detection.
引用
收藏
页数:7
相关论文
共 50 条
[1]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[2]   Supercollision cooling in undoped graphene [J].
Betz, A. C. ;
Jhang, S. H. ;
Pallecchi, E. ;
Ferreira, R. ;
Feve, G. ;
Berroir, J-M. ;
Placais, B. .
NATURE PHYSICS, 2013, 9 (02) :109-112
[3]   Hot Electron Cooling by Acoustic Phonons in Graphene [J].
Betz, A. C. ;
Vialla, F. ;
Brunel, D. ;
Voisin, C. ;
Picher, M. ;
Cavanna, A. ;
Madouri, A. ;
Feve, G. ;
Berroir, J. -M. ;
Placais, B. ;
Pallecchi, E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (05)
[4]   Observation of neutral modes in the fractional quantum Hall regime [J].
Bid, Aveek ;
Ofek, N. ;
Inoue, H. ;
Heiblum, M. ;
Kane, C. L. ;
Umansky, V. ;
Mahalu, D. .
NATURE, 2010, 466 (7306) :585-590
[5]   Electronic Cooling in Graphene [J].
Bistritzer, R. ;
MacDonald, A. H. .
PHYSICAL REVIEW LETTERS, 2009, 102 (20)
[6]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[7]   Phonon Bottleneck in Graphene-Based Josephson Junctions at Millikelvin Temperatures [J].
Borzenets, I. V. ;
Coskun, U. C. ;
Mebrahtu, H. T. ;
Bomze, Yu. V. ;
Smirnov, A. I. ;
Finkelstein, G. .
PHYSICAL REVIEW LETTERS, 2013, 111 (02)
[8]   Thermopower and Nernst effect in graphene in a magnetic field [J].
Checkelsky, Joseph G. ;
Ong, N. P. .
PHYSICAL REVIEW B, 2009, 80 (08)
[9]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[10]   Electron-phonon mediated heat flow in disordered graphene [J].
Chen, Wei ;
Clerk, Aashish A. .
PHYSICAL REVIEW B, 2012, 86 (12)