Physicochemical properties of bacterial cellulose obtained from different Kombucha fermentation conditions

被引:18
作者
Villarreal-Soto, Silvia A. [1 ]
Bouajila, Jalloul [1 ]
Beaufort, Sandra [1 ]
Bonneaud, Denis [1 ]
Souchard, Jean-Pierre [1 ]
Taillandier, Patricia [1 ]
机构
[1] Univ Toulouse, CNRS, INPT, Lab Genie Chim,UMR 5503,UPS, Toulouse, France
关键词
bacterial cellulose; fermentation conditions; Kombucha; SEM; TGA;
D O I
10.1002/vnl.21795
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
The production of bacterial cellulose has been limited due to its high cost and low productivity. Alternative low-cost sources of this biopolymer of high purity and biocompatibility are needed in order to benefit from its enormous potential. Kombucha tea is a trend functional beverage whose production is growing exponentially worldwide, and the bacteria present in this fermented beverage belonging to the genusKomagataeibacterare capable of producing a crystalline biofilm with interesting properties. Obtaining bacterial cellulose from Kombucha tea has already been studied, however several fermentation conditions are being optimized in order to scale-up its production. In this study, we characterized the bacterial cellulose produced from three different Kombucha fermentation conditions. The scanning electron microscopy images revealed the crystalline structure of the biofilms. The energy-dispersive x-ray analysis exhibited the chemical composition of the crystals. The thermogravimetric analysis showed a rate of degradation between 490 and 560 degrees C and the differential scanning calorimetry confirmed the presence of crystalline and amorphous regions in the bacterial cellulose samples. The results suggested that crystalline cellulose could be obtained by varying the fermentation conditions of Kombucha tea.
引用
收藏
页码:183 / 190
页数:8
相关论文
共 28 条
[1]  
Allison DG, 2003, BIOFOULING, V19, P139, DOI [10.1080/0892701031000072190, 10.1038/nrmicro2415]
[2]   A comparison of kombucha SCOBY bacterial cellulose purification methods [J].
Amarasekara, Ananda S. ;
Wang, Deping ;
Grady, Tony L. .
SN APPLIED SCIENCES, 2020, 2 (02)
[3]   Progress in bacterial cellulose matrices for biotechnological applications [J].
Cacicedo, Maximiliano L. ;
Castro, M. Cristina ;
Servetas, Ioannis ;
Bosnea, Loulouda ;
Boura, Konstantina ;
Tsafrakidou, Panagiota ;
Dima, Agapi ;
Terpou, Antonia ;
Koutinas, Athanasios ;
Castro, Guillermo R. .
BIORESOURCE TECHNOLOGY, 2016, 213 :172-180
[4]  
COTON M, 2017, FEMS MICROBIOLOGY EC, V93, P1, DOI [DOI 10.1093/FEMSEC/FIX048, DOI 10.1093/FEMSEC/X048]
[5]   Microbial cellulose - the natural power to heal wounds [J].
Czaja, W ;
Krystynowicz, A ;
Bielecki, S ;
Brown, RM .
BIOMATERIALS, 2006, 27 (02) :145-151
[6]   A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose [J].
de Oliveira Barud, Helida Gomes ;
da Silva, Robson Rosa ;
Barud, Hernane da Silva ;
Tercjak, Agnieszka ;
Gutierrez, Junkal ;
Lustri, Wilton Rogerio ;
de Oliveira Junior, Osmir Batista ;
Ribeiro, Sidney J. L. .
CARBOHYDRATE POLYMERS, 2016, 153 :406-420
[7]   Bacterial Nanocellulose from Side-Streams of Kombucha Beverages Production: Preparation and Physical-Chemical Properties [J].
Dima, Stefan-Ovidiu ;
Panaitescu, Denis-Mihaela ;
Orban, Csongor ;
Ghiurea, Marius ;
Doncea, Sanda-Maria ;
Fierascu, Radu Claudiu ;
Nistor, Cristina Lavinia ;
Alexandrescu, Elvira ;
Nicolae, Cristian-Andi ;
Trica, Bogdan ;
Moraru, Angela ;
Oancea, Florin .
POLYMERS, 2017, 9 (08)
[8]  
El-Salam SSA., 2012, NEW YORK SCI J, V5, P81
[9]   Recent Developments in Biopolymers [J].
Flaris, Vicki ;
Singh, Gurpreet .
JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, 2009, 15 (01) :1-11
[10]   Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process [J].
Gea, Saharman ;
Reynolds, Christopher T. ;
Roohpour, Nima ;
Wirjosentono, Basuki ;
Soykeabkaew, Nattakan ;
Bilotti, Emiliano ;
Peijs, Ton .
BIORESOURCE TECHNOLOGY, 2011, 102 (19) :9105-9110