Assessment of Radiologist Performance in the Detection of Lung Nodules: Dependence on the Definition of "Truth"

被引:64
作者
Armato, Samuel G., III [1 ]
Roberts, Rachael Y. [1 ]
Kocherginsky, Masha [2 ]
Aberle, Denise R. [3 ]
Kazerooni, Ella A. [4 ]
MacMahon, Heber [1 ]
van Beek, Edwin J. R. [5 ]
Yankelevitz, David [10 ]
McLennan, Geoffrey [6 ,7 ,8 ]
McNitt-Gray, Michael F. [3 ]
Meyer, Charles R. [4 ]
Reeves, Anthony P. [9 ]
Caligiuri, Philip [1 ]
Quint, Leslie E. [4 ]
Sundaram, Baskaran [4 ]
Croft, Barbara Y. [11 ]
Clarke, Laurence P. [11 ]
机构
[1] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Hlth Studies, Chicago, IL 60637 USA
[3] Univ Calif Los Angeles, Dept Radiol Sci, Los Angeles, CA 90024 USA
[4] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[5] Univ Iowa, Dept Radiol, Iowa City, IA 52242 USA
[6] Univ Iowa, Dept Med, Iowa City, IA 52242 USA
[7] Univ Iowa, Dept Radiol, Iowa City, IA 52242 USA
[8] Univ Iowa, Dept Biomed Engn, Iowa City, IA 52242 USA
[9] Cornell Univ, Dept Elect & Comp Engn, Ithaca, NY USA
[10] Cornell Univ, Weill Med Coll, Ithaca, NY USA
[11] NCI, Canc Imaging Program, Rockville, MD USA
关键词
Lung nodule; computed tomography (CT); thoracic imaging; interobserver variability; computer-aided diagnosis (CAD); IMAGE-DATABASE-CONSORTIUM; LIDC; CT; ANNOTATION; RESOURCE; SIZE;
D O I
10.1016/j.acra.2008.05.022
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives. Studies that evaluate the lung nodule detection performance of radiologists or computerized methods depend on an initial inventory of the nodules within the thoracic images (the "truth"). The purpose of this study was to analyze (1) variability in the "truth" defined by different combinations of experienced thoracic radiologists and (2) variability in the performance of other experienced thoracic radiologists based on these definitions of "truth" in the context of lung nodule detection in Computed tomographic (CT) scans. Materials and Methods. Twenty-five thoracic CT scans were reviewed by four thoracic radiologists, who independently marked lesions they considered to be nodules >= 3 mm in maximum diameter. Panel "truth" sets of nodules were then derived from the nodules marked by different combinations of two and three of these four radiologists. The nodule detection performance of the other radiologists was evaluated based on these panel "truth" sets. Results. The number of "true" nodules in the different panel "truth" sets ranged from 15 to 89 (mean 49.8 +/- 25.6). The mean radiologist nodule detection sensitivities across radiologists and panel "truth" sets for different panel "truth" conditions ranged from 51.0 to 83.2%: mean false-positive rates ranged from 0.33 to 1.39 per case. Conclusions. Substantial variability exists across radiologists in the task Of hung nodule identification in CT scans. The definition of "truth" on which lung nodule detection studies are based must be carefully considered, because even experienced thoracic radiologists may not perform well when measured against the "truth" established by other experienced thoracic radiologists.
引用
收藏
页码:28 / 38
页数:11
相关论文
共 20 条
  • [1] [Anonymous], 2002, FED REGISTER, V57, P53182
  • [2] The Lung Image Database Consortium (LIDC): An evaluation of radiologist variability in the identification of lung nodules on CT scans
    Armato, Samuel G., III
    McNitt-Gray, Michael F.
    Reeves, Anthony P.
    Meyer, Charles R.
    McLennan, Geoffrey
    Aberle, Denise R.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Hoffman, Eric A.
    Henschke, Claudia I.
    Roberts, Rachael Y.
    Brown, Matthew S.
    Engelmann, Roger M.
    Pais, Richard C.
    Piker, Christopher W.
    Qing, David
    Kocherginsky, Masha
    Croft, Barbara Y.
    Clarke, Laurence P.
    [J]. ACADEMIC RADIOLOGY, 2007, 14 (11) : 1409 - 1421
  • [3] Lung image database consortium: Developing a resource for the medical imaging research community
    Armato, SG
    McLennan, G
    McNitt-Gray, MF
    Meyer, CR
    Yankelevitz, D
    Aberle, DR
    Henschke, CI
    Hoffman, EA
    Kazerooni, EA
    MacMahon, H
    Reeves, AP
    Croft, BY
    Clarke, LP
    [J]. RADIOLOGY, 2004, 232 (03) : 739 - 748
  • [4] National Cancer Institute Initiative: Lung image database resource for imaging research
    Clarke, LP
    Croft, BY
    Staab, E
    Baker, H
    Sullivan, DC
    [J]. ACADEMIC RADIOLOGY, 2001, 8 (05) : 447 - 450
  • [5] Assessment methodologies and statistical issues for computer-aided diagnosis of lung nodules in computed tomography: Contemporary research topics relevant to the lung image database consortium
    Dodd, LE
    Wagner, RF
    Armato, SG
    McNitt-Gray, MF
    Beiden, S
    Chan, HP
    Gur, D
    McLennan, G
    Metz, CE
    Petrick, N
    Sahiner, B
    Sayre, J
    [J]. ACADEMIC RADIOLOGY, 2004, 11 (04) : 462 - 475
  • [6] JIANG Y, 2007, MED IM PERC C U IOW, V12
  • [7] VISUAL SCANNING, PATTERN-RECOGNITION AND DECISION-MAKING IN PULMONARY NODULE DETECTION
    KUNDEL, HL
    NODINE, CF
    CARMODY, D
    [J]. INVESTIGATIVE RADIOLOGY, 1978, 13 (03) : 175 - 181
  • [8] Pulmonary nodule detection with low-dose CT of the lung: Agreement among radiologists
    Leader, JK
    Warfel, TE
    Fuhrman, CR
    Golla, SK
    Weissfeld, JL
    Avila, RS
    Turner, WD
    Zheng, B
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2005, 185 (04) : 973 - 978
  • [9] The Lung Image Database Consortium (LIDC) data collection process for nodule detection and annotation
    McNitt-Gray, Michael F.
    Armato, Samuel G., III
    Meyer, Charles R.
    Reeves, Anthony P.
    McLennan, Geoffrey
    Pais, Richie C.
    Freymann, John
    Brown, Matthew S.
    Engelmann, Roger M.
    Bland, Peyton H.
    Laderach, Gary E.
    Piker, Chris
    Guo, Junfeng
    Towfic, Zaid
    Qing, David P. -Y.
    Yankelevitz, David F.
    Aberle, Denise R.
    van Beek, Edwin J. R.
    MacMahon, Heber
    Kazerooni, Ella A.
    Croft, Barbara Y.
    Clarke, Laurence P.
    [J]. ACADEMIC RADIOLOGY, 2007, 14 (12) : 1464 - 1474
  • [10] Evaluation of lung MDCT nodule annotation across radiologists and methods
    Meyer, Charles R.
    Johnson, Timothy D.
    McLennan, Geoffrey
    Aberle, Denise R.
    Kazerooni, Ella A.
    MacMahon, Heber
    Mullan, Brian F.
    Yankelevitz, David F.
    van Beek, Edwin J. R.
    Armato, Samuel G., III
    McNitt-Gray, Michael F.
    Reeves, Anthony P.
    Gur, David
    Henschke, Claudia I.
    Hoffman, Eric A.
    Bland, Peyton H.
    Laderach, Gary
    Pais, Richie
    Qing, David
    Piker, Chris
    Guo, Junfeng
    Starkey, Adam
    Max, Daniel
    Croft, Barbara Y.
    Clarke, Laurence P.
    [J]. ACADEMIC RADIOLOGY, 2006, 13 (10) : 1254 - 1265