Some identities of Frobenius-Euler polynomials arising from umbral calculus

被引:40
作者
Kim, Dae San [1 ]
Kim, Taekyun [2 ]
机构
[1] Sogang Univ, Dept Math, Seoul 121742, South Korea
[2] Kwangwoon Univ, Dept Math, Seoul 139701, South Korea
基金
新加坡国家研究基金会;
关键词
Vector Space; Formal Power Series; Linear Functional; Monic Polynomial; Multiplicative Inverse;
D O I
10.1186/1687-1847-2012-196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study some interesting identities of Frobenius-Euler polynomials arising from umbral calculus.
引用
收藏
页数:10
相关论文
共 13 条
[1]  
[Anonymous], MEM FS KOCHI U A
[2]  
[Anonymous], MEM FS KYUSHU U A
[3]  
Araci S., 2012, Advanced Studies in Contemporary Mathematics, V22, P399
[4]  
Dere R., 2012, Advanced Studies in Contemporary Mathematics, V22, P433
[5]  
Kim T., 2012, Advanced Studies in Contemporary Mathematics, V22, P215
[6]   Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on a"currency sign p [J].
Kim, T. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2009, 16 (01) :93-96
[7]   Identities involving Frobenius-Euler polynomials arising from non-linear differential equations [J].
Kim, Taekyun .
JOURNAL OF NUMBER THEORY, 2012, 132 (12) :2854-2865
[8]  
Rim S. H., 2012, Advanced Studies in Contemporary Mathematics, V22, P93
[9]  
Rim S-H, 2011, INT J MATH MATH SCI, V2011
[10]  
ROMAN S, 2005, UMBRAL CALCULUS