Deep learning artificial intelligence models for prediction of visual field progression

被引:0
|
作者
Hu, May-Lyn [1 ]
Morlet, Nigel [1 ]
Liu, Wei [1 ]
Glance, David [1 ]
Morgan, Bill [1 ]
Manners, Siobhan [1 ]
Ng, Jonathon [1 ]
机构
[1] Univ Western Australia, Perth, WA, Australia
来源
关键词
D O I
暂无
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
引用
收藏
页码:926 / 926
页数:1
相关论文
共 50 条
  • [1] Prediction of visual field progression in glaucoma: existing methods and artificial intelligence
    Ryo Asaoka
    Hiroshi Murata
    Japanese Journal of Ophthalmology, 2023, 67 : 546 - 559
  • [2] Prediction of visual field progression in glaucoma: existing methods and artificial intelligence
    Asaoka, Ryo
    Murata, Hiroshi
    JAPANESE JOURNAL OF OPHTHALMOLOGY, 2023, 67 (05) : 546 - 559
  • [3] Prediction of Visual Field Progression with Measurements Using Deep Learning
    Mohammadzadeh, Vahid
    Wu, Sean
    Besharati, Sajad
    Davis, Tyler
    Vepa, Arvind
    Morales, Esteban
    Edalati, Kiumars
    Rafiee, Mahshad
    Martinyan, Arthur
    Zhang, David
    Scalzo, Fabien
    Caprioli, Joseph
    Nouri-Mahdavi, Kouros
    AMERICAN JOURNAL OF OPHTHALMOLOGY, 2024, 262 : 141 - 152
  • [4] Visual Field Prediction Evaluating the Clinical Relevance of Deep Learning Models
    Eslami, Mohammad
    Kim, Julia A.
    Zhang, Miao
    Boland, Michael, V
    Wang, Mengyu
    Chang, Dolly S.
    Elze, Tobias
    OPHTHALMOLOGY SCIENCE, 2023, 3 (01):
  • [5] Evaluation of Deep Learning Visual Field Prediction Models for Clinical Relevance
    Eslami, Mohammad
    Zhang, Miao
    Kim, Julia
    Chang, Dolly
    Li, Yangjiani
    Kazeminasab, Saber
    Fazli, Mojtaba
    Sharma, Vishal
    Boland, Michael
    Zebardast, Nazlee
    Wang, Mengyu
    Elze, Tobias
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)
  • [6] Explainable artificial intelligence for stroke prediction through comparison of deep learning and machine learning models
    Moulaei, Khadijeh
    Afshari, Lida
    Moulaei, Reza
    Sabet, Babak
    Mousavi, Seyed Mohammad
    Afrash, Mohammad Reza
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [7] Prediction of visual field progression based on initial OCT structure measurements using Artificial Intelligence
    Moghimi, Sasan
    Mahmoudinezhad, Golnoush
    Parupudi, V. S. Raghu
    Krishan, Vyshnavi S.
    Shukla, Siddharth
    Cheng, Jiacheng
    Beheshtaein, Siavash
    Latif, Kareem
    Nishida, Takashi
    Christopher, Mark
    Fazio, Massimo A.
    Liebmann, Jeffrey M.
    Girkin, Christopher A.
    Zangwill, Linda M.
    Vasconcelos, Nuno
    Weinreb, Robert N.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [8] Machine Learning for Prediction of Visual Field Progression
    Nouri-Mahdavi, Kouros
    Mohammadzadeh, Vahid
    Rabiolo, Alessandro
    Caprioli, Joseph
    Yousefi, Siamak
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [9] Artificial intelligence for skin permeability prediction: deep learning
    Ita, Kevin
    Roshanaei, Sahba
    JOURNAL OF DRUG TARGETING, 2024, 32 (03) : 334 - 346
  • [10] Deep learning models and the limits of explainable artificial intelligence
    Jens Christian Bjerring
    Jakob Mainz
    Lauritz Munch
    Asian Journal of Philosophy, 4 (1):