共 50 条
SiO2-supported ferromagnetic catalysts for hydrogen generation from alkaline NaBH4 (sodium borohydride) solution
被引:65
作者:
Shih, Yu-Jen
[1
]
Su, Chia-Chi
[2
]
Huang, Yao-Hui
[1
,3
]
Lu, Ming-Chun
[2
]
机构:
[1] Natl Cheng Kung Univ, Dept Chem Engn, Tainan 701, Taiwan
[2] Chia Nan Univ Pharm & Sci, Dept Environm Resources Management, Tainan 717, Taiwan
[3] Natl Cheng Kung Univ, Sustainable Environm Res Ctr, Tainan 701, Taiwan
来源:
关键词:
Porous SiO2;
Ferromagnetic metals;
Cobalt loading;
Hydrogen generation;
Sodium borohydride;
COMPOSITE CATALYST;
RU COMPOSITE;
HYDROLYSIS;
TRANSITION;
STORAGE;
D O I:
10.1016/j.energy.2013.01.063
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
Ferromagnetic elements Fe, Ni and Co were immobilized on the porous SiO2 to catalyze the hydrogen generation from aqueous alkaline NaBH4 (sodium borohydride). The porous SiO2 was prepared by silica-surfactant self-assembly and the ferromagnetic catalyst was prepared by chemical reduction. The ferromagnetic catalysts were characterized using TG/DTA (Thermogravimetry/differential thermal analysis), BET, XRD (X-ray powder diffraction), ESEM/EDS (environmental scanning electron microscope/energy dispersive spectroscopy), XPS (x-ray photoelectron spectroscopy) and VSM (vibration sample magnetometer) measurements. The surface area of porous SiO2 was affected by the molecular weight of surfactant. The relative catalytic activities in the generation of hydrogen from alkaline NaBH4 solution follow the order Co/SiO2 > Ni/SiO2 > Fe/SiO2. The rates of hydrogen generation using Co/SiO2, Ni/SiO2 and Fe/SiO2 catalysts in 20 ml of 5 wt.% NaBH4 solution at 313 K were 8701, 307 and 130 ml min(-1) g(-1)-metal, respectively. It is found that the degree of metal-oxidation and crystal structure affected the catalytic activity. The hydrogen generation of NaBH4 in alkaline solution increased with increasing cobalt loading, of which the activation energy was 59 +/- 2 kJ mol(-1). (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:263 / 270
页数:8
相关论文
共 50 条