FINITE ELEMENT SPECTRAL ANALYSIS FOR THE MIXED FORMULATION OF THE ELASTICITY EQUATIONS

被引:29
作者
Meddahi, Salim [1 ]
Mora, David [2 ,3 ]
Rodriguez, Rodolfo [4 ]
机构
[1] Univ Oviedo, Fac Ciencias, Dept Matemat, Oviedo, Spain
[2] Univ Bio Bio, Dept Matemat, Concepcion, Chile
[3] Univ Concepcion, CI2MA, Concepcion, Chile
[4] Univ Concepcion, CI2MA, Dept Ingn Matemat, Concepcion, Chile
关键词
mixed elasticity equations; eigenvalue problem; finite elements; error estimates; LINEAR ELASTICITY; APPROXIMATION;
D O I
10.1137/120863010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to analyze the linear elasticity eigenvalue problem formulated in terms of the stress tensor and the rotation. This is achieved by considering a mixed variational formulation in which the symmetry of the stress tensor is imposed weakly. We show that a discretization of the mixed eigenvalue elasticity problem with reduced symmetry based on the lowest order Arnold-Falk-Winther element provides a correct approximation of the spectrum. We also prove quasi-optimal error estimates. Finally, we report some numerical experiments.
引用
收藏
页码:1041 / 1063
页数:23
相关论文
共 20 条
[1]   A mixed finite element method for elasticity in three dimensions [J].
Adams, S ;
Cockburn, B .
JOURNAL OF SCIENTIFIC COMPUTING, 2005, 25 (03) :515-521
[2]  
Arnold D. N., 1984, JAPAN J APPL MATH, V1, P347
[3]   Mixed finite elements for elasticity [J].
Arnold, DN ;
Winther, R .
NUMERISCHE MATHEMATIK, 2002, 92 (03) :401-419
[4]   Mixed finite element methods for linear elasticity with weakly imposed symmetry [J].
Arnold, Douglas N. ;
Falk, Richard S. ;
Winther, Ragnar .
MATHEMATICS OF COMPUTATION, 2007, 76 (260) :1699-1723
[5]  
Arnold DN, 2006, ACT NUMERIC, V15, P1, DOI 10.1017/S0962492906210018
[6]  
Arnold DN, 2006, IMA VOL MATH APPL, V142, P47
[7]  
Babuska I., 1991, HDB NUMERICAL ANAL, V2
[8]   FINITE-ELEMENT VIBRATION ANALYSIS OF FLUID-SOLID SYSTEMS WITHOUT SPURIOUS MODES [J].
BERMUDEZ, A ;
DURAN, R ;
MUSCHIETTI, MA ;
RODRIGUEZ, R ;
SOLOMIN, J .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (04) :1280-1295
[9]   FINITE-ELEMENT COMPUTATION OF THE VIBRATION MODES OF A FLUID-SOLID SYSTEM [J].
BERMUDEZ, A ;
RODRIGUEZ, R .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 119 (3-4) :355-370
[10]  
Boffi D, 2000, MATH COMPUT, V69, P121, DOI 10.1090/S0025-5718-99-01072-8