Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations

被引:124
作者
Wazwaz, AM [1 ]
机构
[1] St Francis Xavier Univ, Dept Math & Comp Sci, Chicago, IL 60655 USA
关键词
Degasperis-Procesi equation; Camassa-Holm equation; solitary wave solutions; sine-cosine method; tanh method;
D O I
10.1016/j.physleta.2005.12.036
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations are developed. Unlike the standard Degasperis-Procesi and Camassa-Holm equations, where multi-peakon solutions arise, the modification caused a change in the characteristic of these peakon solutions and changed it to bell-shaped solitons. The tanh method and the sine-cosine method are used to achieve this goal. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:500 / 504
页数:5
相关论文
共 18 条
[1]  
Camassa R, 2003, DISCRETE CONT DYN-B, V3, P115
[2]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[3]   A new type of bounded waves for Degasperis-Procesi equation [J].
Chen, C ;
Tang, MY .
CHAOS SOLITONS & FRACTALS, 2006, 27 (03) :698-704
[4]  
Degasperis A, 2002, ASYMPTOTIC INTEGRABI, P23
[5]   Peaked wave solutions of Camassa-Holm equation's [J].
Liu, ZR ;
Wang, RQ ;
Jing, ZJ .
CHAOS SOLITONS & FRACTALS, 2004, 19 (01) :77-92
[6]   Peakons of the Camassa-Holm equation [J].
Liu, ZR ;
Qian, TF .
APPLIED MATHEMATICAL MODELLING, 2002, 26 (03) :473-480
[7]   Multi-peakon solutions of the Degasperis-Procesi equation [J].
Lundmark, H ;
Szmigielski, J .
INVERSE PROBLEMS, 2003, 19 (06) :1241-1245
[8]   The tanh method .2. Perturbation technique for conservative systems [J].
Malfliet, W ;
Hereman, W .
PHYSICA SCRIPTA, 1996, 54 (06) :569-575
[9]   The tanh method .1. Exact solutions of nonlinear evolution and wave equations [J].
Malfliet, W ;
Hereman, W .
PHYSICA SCRIPTA, 1996, 54 (06) :563-568
[10]   A note on the Degasperis-Procesi equation [J].
Mustafa, OG .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 (01) :10-14